The mechanical functions of muscles are generating force and actuating movement by shortening or lengthening under load. These functions are influenced, in part, by the internal arrangement of muscle fibers with respect to the muscle’s mechanical line of action. This property is known as muscle architecture. In this review, we describe the use of diffusion-tensor (DT-) MRI muscle fiber tracking for studying muscle architecture. In the first section, the importance of skeletal muscle architecture to function is discussed. Also, traditional and complementary methods for assessing muscle architecture (brightness-mode ultrasound imaging and cadaver analysis) are presented. Next, DT-MRI is introduced and the structural basis for the reduced and anisotropic diffusion of water in muscle is discussed. The third section discusses issues related to the acquisition of skeletal muscle DT-MRI data and presents recommendations for optimal strategies. The fourth section discusses methods for pre-processing DT-MRI data, the available approaches for calculating the diffusion tensor and seeding and propagating fiber tracts, and analyzing the tracking results to measure structural properties pertinent to muscle biomechanics. Lastly, examples of how DT-MRI fiber tracking has been used to provide new insights into how muscle function are presented and important future research directions are highlighted.
Brown adipose tissue undergoes a dynamic, heterogeneous response to cold exposure that can include the simultaneous synthesis, uptake, and oxidation of fatty acids. The purpose of this work was to quantify these changes in brown adipose tissue lipid content (fat-signal fraction (FSF)) using fat-water magnetic resonance imaging during individualized cooling to 3 °C above a participant’s shiver threshold. Eight healthy men completed familiarization, perception-based cooling, and MRI-cooling visits. FSF maps of the supraclavicular region were acquired in thermoneutrality and during cooling (59.5 ± 6.5 min). Brown adipose tissue regions of interest were defined, and voxels were grouped into FSF decades (0–10%, 10–20%…90–100%) according to their initial value. Brown adipose tissue contained a heterogeneous morphology of lipid content. Voxels with initial FSF values of 60–100% (P < 0.05) exhibited a significant decrease in FSF while a simultaneous increase in FSF occurred in voxels with initial FSF values of 0–30% (P < 0.05). These data suggest that in healthy young men, cold exposure elicits a dynamic and heterogeneous response in brown adipose tissue, with areas initially rich with lipid undergoing net lipid loss and areas of low initial lipid undergoing a net lipid accumulation.
Pulverized bone specks and aluminum oxide specks were measured by hand into sizes ranging from 0.2 mm to 1.0 mm and then arranged in clusters. These clusters were superimposed on a human breast tissue phantom, and xeromammograms and screen-film mammograms of the clusters were made. The screen-film mammograms were digitized using a high-resolution laser scanner and then displayed on cathode ray tube (CRT) monitors. Six radiologists independently counted the microcalcifications on the xeromammograms, the screen-film mammograms, and the digitized-film mammograms. The xeromammograms were examined with a magnifying glass; the screen-film images were examined with a magnifying glass and by hot light; and the digitized-film images were examined by electronic magnification and image processing. The bone speck size that corresponded to a mean 50% detectability level for each technique was as follows: xeromammography, 0.550 mm; digitized film, 0.573 mm; and screen-film, 0.661 mm. We postulate that electronic magnification and image processing with edge enhancement can improve the capability of screen-film mammography to enhance the detection of microcalcifications.
A 27-year-old woman with a mechanical heart valve suffered multiple thromboembolic events while pregnant despite anticoagulation with high-dose heparin. Warfarin, the anti-coagulant of choice for patients with prosthetic heart valves, is teratogenic and can cause hemorrhagic complications at delivery. Heparin reduces thromboembolic complications, but is of uncertain efficacy. We discuss alternatives for the prevention of thromboembolic complications in pregnant women with mechanical heart valves.
Purpose The purpose of this study was to determine the feasibility of muscle BOLD (mBOLD) imaging at 7T by comparing the changes in R2* of muscle at 3 and 7T in response to a brief period of tourniquet-induced ischemia. Methods Eight subjects (3 male), aged 29.5 ± 6.1 years (mean ± standard deviation, SD), 167.0 ± 10.6 cm tall with a body mass of 62.0 ± 18.0 kg, participated in the study. Subjects reported to the lab on four separate occasions including a habituation session, two MRI scans, and in a subset of subjects, a session during which changes in blood flow and blood oxygenation were quantified using Doppler ultrasound (U/S) and near-infrared spectroscopy (NIRS) respectively. For statistical comparisons between 3T and 7T, R2* rate constants were calculated as R2* = 1/T2*. Results The mean pre-occlusion R2* value was greater at 7T than at 3T (60.16 ± 2.95 vs 35.17 ± 0.35 s−1 respectively, p <0.001). Also, the mean ΔR2*END and ΔR2*POST values were greater for 7T than for 3T (−2.36 ± 0.25 vs. −1.24 ± 0.39 s−1, respectively, Table 1). Conclusion Muscle BOLD contrast at 7T is as much as six-fold greater than at 3T. In addition to providing greater SNR and CNR, 7T mBOLD studies may offer further advantages in the form of greater sensitivity to pathological changes in the muscle microcirculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.