Quantitative studies of embryogenesis require the ability to monitor pattern formation and morphogenesis in large numbers of embryos, at multiple time points, and in diverse genetic backgrounds. We describe a simple approach that greatly facilitates these tasks for Drosophila melanogaster embryos, one of the most advanced models of developmental genetics. Based on passive hydrodynamics, we developed a microfluidic embryo trap array that rapidly orders and vertically orients hundreds of embryos. We describe the physical principles of the design and use this platform for the quantitative analysis of multiple morphogen gradients in the dorsoventral patterning system. Our approach can also be used for live imaging, and, with slight modifications, could be adapted for studies of pattern formation and morphogenesis in other model organisms.
The nematode Caenorhabditis elegans is an important model organism in genetic research and drug screening because of its relative simplicity, ease of maintenance, amenability to simple genetic manipulation, and relevance to human biology. However, their small size and mobility make nematodes difficult to physically manipulate, particularly with spatial and temporal precision. We have developed a microfluidic device to overcome these challenges and enable fast behavior-based chemical screening in C. elegans. The key components of this easy-to-use device allow rapid loading and housing of C. elegans in a chamber array for chemical screening. A simple two-step loading process enables simultaneous loading of a large number of animals within a few minutes without using any expensive/active off-chip components. In addition, chemicals can be precisely delivered to the worms and exchanged with high temporal precision. To demonstrate this feature and the ability to measure time dependent responses to chemicals, we characterize the transient response of worms exposed to different concentrations of anesthetics. We then use the device to study the effect of chemical signals from hermaphrodite worms on male behavior. The ability of the device to maintain a large number of free moving animals in one field of view over a long period of time permits us to demonstrate an increase in the incidence of a specific behavior in males subjected to worm-conditioned medium. Because our device allows monitoring of a large number of worms with single-animal resolution, we envision that this platform will greatly expedite chemical screening in C. elegans.
Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cells (cell surface engineering and synthetic gene circuits) to modulate juxtacrine cell-cell signaling. In addition, significant progress has been made in elucidating design rules and strategies to modulate juxtacrine signaling based on quantitative, engineering analysis of the mechanical and regulatory role of juxtacrine signals in the context of other cues and physical constraints in the microenvironment. These advances in engineering juxtacrine signaling lay a strong foundation for an integrative approach to utilizing synthetic cells, advanced ‘chassis’ and predictive modeling to engineer the form and function of living tissues.
We have used arrays of microwave-generated microplasmas operating at atmospheric pressure to generate high concentrations of singlet molecular oxygen, O2(1Δg), which is of interest for biomedical applications. The discharge is sustained by a pair of microstrip-based microwave resonator arrays which force helium/oxygen gas mixtures through a narrow plasma channel. We have demonstrated the efficacy of both NO and less-hazardous N2O additives for suppression of ozone and associated enhancement of the O2(1Δg) yield. Quenching of O2(1Δg) by ozone is sufficiently suppressed such that quenching by ground state molecular oxygen becomes the dominant loss mechanism in the post-discharge outflow. We verified the absence of other significant gas-phase quenching mechanisms by measuring the O2(1Δg) decay along a quartz flow tube. These measurements indicated a first-order rate constant of (1.2 ± 0.3) × 10-24 m3 s−1, slightly slower than but consistent with prior measurements of singlet oxygen quenching on ground state oxygen. The discharge-initiated reaction mechanisms and data analysis are discussed in terms of a chemical kinetics model of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.