IMPORTANCE Deutetrabenazine is a novel molecule containing deuterium, which attenuates CYP2D6 metabolism and increases active metabolite half-lives and may therefore lead to stable systemic exposure while preserving key pharmacological activity. OBJECTIVE To evaluate efficacy and safety of deutetrabenazine treatment to control chorea associated with Huntington disease. DESIGN, SETTING, AND PARTICIPANTS Ninety ambulatory adults diagnosed with manifest Huntington disease and a baseline total maximal chorea score of 8 or higher (range, 0-28; lower score indicates less chorea) were enrolled from August 2013 to August 2014 and randomized to receive deutetrabenazine (n = 45) or placebo (n = 45) in a double-blind fashion at 34 Huntington Study Group sites. INTERVENTIONS Deutetrabenazine or placebo was titrated to optimal dose level over 8 weeks and maintained for 4 weeks, followed by a 1-week washout. MAIN OUTCOMES AND MEASURES Primary end point was the total maximal chorea score change from baseline (the average of values from the screening and day-0 visits) to maintenance therapy (the average of values from the week 9 and 12 visits) obtained by in-person visits. This study was designed to detect a 2.7-unit treatment difference in scores. The secondary end points, assessed hierarchically, were the proportion of patients who achieved treatment success on the Patient Global Impression of Change (PGIC) and on the Clinical Global Impression of Change (CGIC), the change in 36-Item Short Form-physical functioning subscale score (SF-36), and the change in the Berg Balance Test. RESULTS Ninety patients with Huntington disease (mean age, 53.7 years; 40 women [44.4%]) were enrolled. In the deutetrabenazine group, the mean total maximal chorea scores improved from 12.1 (95% CI, 11.2-12.9) to 7.7 (95% CI, 6.5-8.9), whereas in the placebo group, scores improvedfrom13.2(95%CI,12.2-14.3)to11.3(95%CI,10.0-12.5);themeanbetween-groupdifference was-2.5 units (95% CI,-3.7 to-1.3) (P < .001). Treatment success, as measured by the PGIC, occurred in 23 patients (51%) in the deutetrabenazine group vs 9 (20%) in the placebo group (P = .002). As measured by the CGIC, treatment success occurred in 19 patients (42%) in the deutetrabenazine group vs 6 (13%) in the placebo group (P = .002). In the deutetrabenazine group, the mean SF-36 physical functioning subscale scores decreased from 47.5 (95% CI, 44.3-50.8) to 47.4 (44.3-50.5), whereas in the placebo group, scores decreased from 43.2 (95% CI, 40.2-46.3) to 39.9 (95% CI, 36.2-43.6), for a treatment benefit of 4.3 (95% CI, 0.4 to 8.3) (P = .03). There was no difference between groups (mean difference of 1.0 unit; 95% CI,-0.3 to 2.3; P = .14), for improvement in the Berg Balance Test, which improved by 2.2 units (95% CI, 1.3-3.1) in the deutetrabenazine group and by 1.3 units (95% CI, 0.4-2.2) in the placebo group. Adverse event rates were similar for deutetrabenazine and placebo, including depression, anxiety, and akathisia. CONCLUSIONS AND RELEVANCE Among patients with chorea associated with Hun...
Vascular endothelial growth factor (VEGF) and placental growth factor (PLGF) are increased in the maternal circulation during pregnancy. These factors may increase blood-brain barrier (BBB) permeability, yet brain edema does not normally occur during pregnancy. We therefore hypothesized that in pregnancy, the BBB adapts to high levels of these permeability factors. We investigated the influence of pregnancy-related circulating factors on VEGF-induced BBB permeability by perfusing cerebral veins with plasma from nonpregnant (NP) or late-pregnant (LP) rats (n=6/group) and measuring permeability in response to VEGF. The effect of VEGF, PLGF, and VEGF-receptor (VEGFR) activation on BBB permeability was also determined. Results showed that VEGF significantly increased permeability (×10(7) μm(3)/min) from 9.7 ± 3.5 to 21.0 ± 1.5 (P<0.05) in NP veins exposed to NP plasma, that was prevented when LP veins were exposed to LP plasma; (9.7±3.8; P>0.05). Both LP plasma and soluble FMS-like tyrosine-kinase 1 (sFlt1) in NP plasma abolished VEGF-induced BBB permeability in NP veins (9.5±2.9 and 12±2.6; P>0.05). PLGF significantly increased BBB permeability in NP plasma (18±1.4; P<0.05), and required only VEGFR1 activation, whereas VEGF-induced BBB permeability required both VEGFR1 and VEGFR2. Our findings suggest that VEGF and PLGF enhance BBB permeability through different VEGFR pathways and that circulating sFlt1 prevents VEGF- and PLGF-induced BBB permeability during pregnancy.
IMPORTANCE Urate elevation, despite associations with crystallopathic, cardiovascular, and metabolic disorders, has been pursued as a potential disease-modifying strategy for Parkinson disease (PD) based on convergent biological, epidemiological, and clinical data.OBJECTIVE To determine whether sustained urate-elevating treatment with the urate precursor inosine slows early PD progression.DESIGN, PARTICIPANTS, AND SETTING Randomized, double-blind, placebo-controlled, phase 3 trial of oral inosine treatment in early PD. A total of 587 individuals consented, and 298 with PD not yet requiring dopaminergic medication, striatal dopamine transporter deficiency, and serum urate below the population median concentration (<5.8 mg/dL) were randomized between August 2016 and December 2017 at 58 US sites, and were followed up through June 2019.INTERVENTIONS Inosine, dosed by blinded titration to increase serum urate concentrations to 7.1-8.0 mg/dL (n = 149) or matching placebo (n = 149) for up to 2 years. MAIN OUTCOMES AND MEASURESThe primary outcome was rate of change in the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS; parts I-III) total score (range, 0-236; higher scores indicate greater disability; minimum clinically important difference of 6.3 points) prior to dopaminergic drug therapy initiation. Secondary outcomes included serum urate to measure target engagement, adverse events to measure safety, and 29 efficacy measures of disability, quality of life, cognition, mood, autonomic function, and striatal dopamine transporter binding as a biomarker of neuronal integrity. RESULTSBased on a prespecified interim futility analysis, the study closed early, with 273 (92%) of the randomized participants (49% women; mean age, 63 years) completing the study. Clinical progression rates were not significantly different between participants randomized to inosine 11.1 [95% CI,] points per year) and placebo (MDS-UPDRS score, 9.9 [95% CI, 8.4-11.3] points per year; difference, 1.26 [95% CI, −0.59 to 3.11] points per year; P = .18). Sustained elevation of serum urate by 2.03 mg/dL (from a baseline level of 4.6 mg/dL; 44% increase) occurred in the inosine group vs a 0.01-mg/dL change in serum urate in the placebo group (difference, 2.02 mg/dL [95% CI, 1.85-2.19 mg/dL]; P<.001). There were no significant differences for secondary efficacy outcomes including dopamine transporter binding loss. Participants randomized to inosine, compared with placebo, experienced fewer serious adverse events (7.4 vs 13.1 per 100 patient-years) but more kidney stones (7.0 vs 1.4 stones per 100 patient-years).CONCLUSIONS AND RELEVANCE Among patients recently diagnosed as having PD, treatment with inosine, compared with placebo, did not result in a significant difference in the rate of clinical disease progression. The findings do not support the use of inosine as a treatment for early PD.
It is well-known that the pregnant state is associated with increased sensitivity to endotoxin in renal and uterine circulations, however, the effects on the cerebral circulation are not known. Intravenous infusion of low-dose lipopolysacharride (LPS; 1.5μg/kg) to pregnant Wistar rats on day 14 of pregnancy caused significantly decreased myogenic tone of posterior cerebral arteries on day 20–21 that was not seen in similarly treated nonpregnant rats. Pregnancy alone was associated with a 2–4-fold increase in iNOS, TNFα and IFNγ mRNA in cerebral arteries compared to nonpregnant, suggesting the cerebral circulation is in a state of inflammation during pregnancy. After LPS treatment, cerebral arteries from pregnant animals had increased iNOS and TNFα compared to LPS-treated nonpregnant, but decreased IL-10 and IFNγ. These results demonstrate that pregnancy enhances sensitivity to the effects of LPS in the cerebral circulation that may be due to an enhanced inflammatory state during pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.