Early-onset preeclampsia (EPE) is a severe form of preeclampsia that involves life-threatening neurological complications. However, the underlying mechanism by which EPE affects the maternal brain is not known. We hypothesized that plasma from women with EPE increases blood-brain barrier (BBB) permeability vs. plasma from women with late-onset preeclampsia (LPE) or normal pregnancy (NP) and investigated its underlying mechanism by perfusing cerebral veins from nonpregnant rats (n=6-7/group) with human plasma from women with EPE, LPE, or NP and measuring permeability. We show that plasma from women with EPE significantly increased BBB permeability vs. plasma from women with LPE or NP (P<0.001). BBB disruption in response to EPE plasma was due to a 260% increase of circulating oxidized LDL (oxLDL) binding to its receptor, LOX-1, and subsequent generation of peroxynitrite (P<0.001). A rat model with pathologically high lipid levels in pregnancy showed symptoms of preeclampsia, including elevated blood pressure, growth-restricted fetuses, and LOX-1-dependent BBB disruption, similar to EPE (P<0.05). Thus, we have identified LOX-1 activation by oxLDL and subsequent peroxynitrite generation as a novel mechanism by which disruption of the BBB occurs in EPE. As increased BBB permeability is a primary means by which seizure and other neurological symptoms ensue, our findings highlight oxLDL, LOX-1, and peroxynitrite as important therapeutic targets in EPE.
Vascular endothelial growth factor (VEGF) and placental growth factor (PLGF) are increased in the maternal circulation during pregnancy. These factors may increase blood-brain barrier (BBB) permeability, yet brain edema does not normally occur during pregnancy. We therefore hypothesized that in pregnancy, the BBB adapts to high levels of these permeability factors. We investigated the influence of pregnancy-related circulating factors on VEGF-induced BBB permeability by perfusing cerebral veins with plasma from nonpregnant (NP) or late-pregnant (LP) rats (n=6/group) and measuring permeability in response to VEGF. The effect of VEGF, PLGF, and VEGF-receptor (VEGFR) activation on BBB permeability was also determined. Results showed that VEGF significantly increased permeability (×10(7) μm(3)/min) from 9.7 ± 3.5 to 21.0 ± 1.5 (P<0.05) in NP veins exposed to NP plasma, that was prevented when LP veins were exposed to LP plasma; (9.7±3.8; P>0.05). Both LP plasma and soluble FMS-like tyrosine-kinase 1 (sFlt1) in NP plasma abolished VEGF-induced BBB permeability in NP veins (9.5±2.9 and 12±2.6; P>0.05). PLGF significantly increased BBB permeability in NP plasma (18±1.4; P<0.05), and required only VEGFR1 activation, whereas VEGF-induced BBB permeability required both VEGFR1 and VEGFR2. Our findings suggest that VEGF and PLGF enhance BBB permeability through different VEGFR pathways and that circulating sFlt1 prevents VEGF- and PLGF-induced BBB permeability during pregnancy.
Oxidized low-density lipoprotein (oxLDL) is elevated during several neurologic conditions that involve cerebral edema formation, including severe preeclampsia and eclampsia; however, our understanding of its effect on the cerebral vasculature is limited. We hypothesized that oxLDL induced blood-brain barrier (BBB) disruption and changes in cerebrovascular reactivity occurs through NADPH oxidase-derived superoxide. We also investigated the effect of MgSO4 on oxLDL-induced changes in the cerebral vasculature as this is commonly used in preventing cerebral edema formation. Posterior cerebral arteries (PCA) from female rats were perfused with 5μg/mL oxLDL in rat serum with or without 50μM apocynin or 16mM MgSO4 and BBB permeability and vascular reactivity were compared. oxLDL increased BBB permeability and decreased myogenic tone that were prevented by apocynin. oxLDL increased constriction to the nitric oxide synthase inhibitor L-NNA that was unaffected by apocynin. oxLDL enhanced dilation to the NO donor sodium nitroprusside that was prevented by apocynin. MgSO4 prevented oxLDL-induced BBB permeability without affecting oxLDL-induced changes in myogenic tone. Thus, oxLDL appears to cause BBB disruption and vascular tone dysregulation through NADPH oxidase-derived superoxide. These results highlight oxLDL and NADPH oxidase as potentially important therapeutic targets in neurologic conditions that involve elevated oxLDL.
Background: Interest is growing in the dynamic role of gut microbiome disturbances in human health and disease. No direct evidence is yet available to link gut microbiome dysbiosis to endometrial cancer. This review aims to understand any association between microbiome dysbiosis and important risk factors of endometrial cancer, high estrogen levels, postmenopause and obesity. Methods: A systematic search was performed with PubMed as primary database. Three separate searches were performed to identify all relevant studies. Results: Fifteen studies were identified as highly relevant and included in the review. Eight articles focused on the relationship with obesity and eight studies focused on the menopausal change or estrogen levels. Due to the heterogeneity in patient populations and outcome measures, no meta-analysis could be performed. Both the menopausal change and obesity were noted to enhance dysbiosis by reducing microbiome diversity and increasing the Firmicutes to Bacteroidetes ratio. Both also incurred estrobolome changes, leading to increased systemic estrogen levels, especially after menopause. Furthermore, microbiome dysbiosis was reported to be related to systemic inflammation through toll-like receptor signaling deficiencies and overexpression of pro-inflammatory cytokines. Conclusions: This review highlights that the female gut microbiome is intrinsically linked to estrogen levels, menopausal state and systemic inflammation, which indicates gut microbiome dysbiosis as a potential hallmark for risk stratification for endometrial cancer. Studies are needed to further define the role the gut microbiome plays in women at risk for endometrial cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.