SignificanceFighting wildfires in the United States costs billions of dollars annually. Public dialog and ongoing research have focused on increasing wildfire risk because of climate warming, overlooking the direct role that people play in igniting wildfires and increasing fire activity. Our analysis of two decades of government agency wildfire records highlights the fundamental role of human ignitions. Human-started wildfires accounted for 84% of all wildfires, tripled the length of the fire season, dominated an area seven times greater than that affected by lightning fires, and were responsible for nearly half of all area burned. National and regional policy efforts to mitigate wildfire-related hazards would benefit from focusing on reducing the human expansion of the fire niche.
Cheatgrass (Bromus tectorum) is an invasive grass pervasive across the Intermountain Western US and linked to major increases in fire frequency. Despite widespread ecological impacts associated with cheatgrass, we lack a spatially extensive model of cheatgrass invasion in the Intermountain West. Here, we leverage satellite phenology predictors and thousands of field surveys of cheatgrass abundance to create regional models of cheatgrass distribution and percent cover. We compare cheatgrass presence to fire probability, fire seasonality and ignition source. Regional models of percent cover had low predictive power (34% of variance explained), but distribution models based on a threshold of 15% cover to differentiate high abundance from low abundance had an overall accuracy of 74%. Cheatgrass achieves ≥15% cover over 210,000 km 2 (31%) of the Intermountain West. These lands were twice as likely to burn as those with low abundance, and four times more likely to burn multiple times between 2000-2015. Fire probability increased rapidly at low cheatgrass cover (1-5%) but remained similar at higher cover, suggesting that even small amounts of cheatgrass in an ecosystem can increase fire risk. Abundant cheatgrass was also associated with a 10 day earlier fire seasonality and interacted strongly with anthropogenic ignitions. Fire in cheatgrass was particularly associated with human activity, suggesting that increased awareness of fire danger in invaded areas could reduce risk. This study suggests that cheatgrass is much more spatially extensive and abundant than previously documented and that invasion greatly increases fire frequency, even at low percent cover.
As Earth's climate rapidly changes, species range shifts are considered key to species persistence. However, some range-shifting species will alter community structure and ecosystem processes. By adapting existing invasion risk assessment frameworks, we can identify characteristics shared with high-impact introductions and thus predict potential impacts. There are fundamental differences between introduced and range-shifting species, primarily shared evolutionary histories between range shifters and their new community. Nevertheless, impacts can occur via analogous mechanisms, such as wide dispersal, community disturbance and low biotic resistance. As ranges shift in response to climate change, we have an opportunity to develop plans to facilitate advantageous movements and limit those that are problematic.
Fire-prone invasive grasses create novel ecosystem threats by increasing fine-fuel loads and continuity, which can alter fire regimes. While the existence of an invasive grass-fire cycle is well known, evidence of altered fire regimes is typically based on local-scale studies or expert knowledge. Here, we quantify the effects of 12 nonnative, invasive grasses on fire occurrence, size, and frequency across 29 US ecoregions encompassing more than one third of the conterminous United States. These 12 grass species promote fire locally and have extensive spatial records of abundant infestations. We combined agency and satellite fire data with records of abundant grass invasion to test for differences in fire regimes between invaded and nearby “uninvaded” habitat. Additionally, we assessed whether invasive grass presence is a significant predictor of altered fire by modeling fire occurrence, size, and frequency as a function of grass invasion, in addition to anthropogenic and ecological covariates relevant to fire. Eight species showed significantly higher fire-occurrence rates, which more than tripled for Schismus barbatus and Pennisetum ciliare. Six species demonstrated significantly higher mean fire frequency, which more than doubled for Neyraudia reynaudiana and Pennisetum ciliare. Grass invasion was significant in fire occurrence and frequency models, but not in fire-size models. The significant differences in fire regimes, coupled with the importance of grass invasion in modeling these differences, suggest that invasive grasses alter US fire regimes at regional scales. As concern about US wildfires grows, accounting for fire-promoting invasive grasses will be imperative for effectively managing ecosystems.
Invasive alien species are likely to interact with climate change, thus necessitating management that proactively addresses both global changes. However, invasive species managers' concerns about the effects of climate change, the degree to which they incorporate climate change into their management, and what stops them from doing so remain unknown. Therefore, we surveyed natural resource managers addressing invasive species across the U.S. about their priorities, concerns, and management strategies in a changing climate. Of the 211 managers we surveyed, most were very concerned about the influence of climate change on invasive species management, but their organizations were significantly less so. Managers reported that lack of funding and personnel limited their ability to effectively manage invasive species, while lack of information limited their consideration of climate change in decision-making. Additionally, managers prioritized research that identifies range-shifting invasive species and native communities resilient to invasions and climate change. Managers also reported that this information would be most effectively communicated through conversations, research summaries, and meetings/symposia. Despite the need for more information, 65% of managers incorporate climate change into their invasive species management through strategic planning, preventative management, changing treatment and control, and increasing education and outreach. These results show the potential for incorporating climate change into management, but also highlight a clear and pressing need for more targeted research, accessible science communication, and two-way dialogue between researchers and managers focused on invasive species and climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.