Several annual mesoscale convective complex (MCC) summaries have been compiled since Maddox strictly defined their criteria in 1980. These previous studies have largely been independent of each other and therefore have not established the extended spatial and temporal patterns associated with these large, quasi-circular, and, typically, severe convective systems. This deficiency is primarily due to the difficulty of archiving enough satellite imagery to accurately record each MCC based on Maddox's criteria. Consequently, this study utilizes results from each of the MCC summaries compiled between 1978 and 1999 for the United States in order to develop a more complete climatology, or description of long-term means and interannual variation, of these storms. Within the 22-yr period, MCC summaries were compiled for a total of 15 yr. These 15 yr of MCC data are employed to establish estimated tracks for all MCCs documented and, thereafter, are utilized to determine MCC populations on a monthly, seasonal, annual, and multiyear basis. Subsequent to developing an extended climatology of MCCs, the study ascertains the spatial and temporal patterns of MCC rainfall and determines the precipitation contributions made by MCCs over the central and eastern United States. Results indicate that during the warm season, significant portions of the Great Plains receive, on average, between 8% and 18% of their total precipitation from MCC rainfall. However, there is large yearly and even monthly variability in the location and frequency of MCC events that leads to highly variable precipitation contributions.
Spatial and temporal trends in temperature and precipitation extremes were investigated for the period 1948–2012 across the southeastern United States using 27 previously defined indices. Results show that regionwide warming in extreme minimum temperatures and cooling in extreme maximum temperatures occurred. The disproportionate changes in extreme daytime and nighttime temperatures are narrowing diurnal temperature ranges for most locations. The intensity and magnitude of extreme precipitation events increased overall, except for more easterly locations, particularly in South Carolina. These indices further show that warming in minimum temperatures has been pronounced most in summer and least in winter. Fall has become significantly wetter, while spring and summer have become drier, on average. Principal component analysis (PCA) was used to characterize a “geography of extremes” based on temperature and precipitation extreme indices. The PCA based on temperature indices revealed two coherent western and eastern subregions that share common modes of variability in extremes. Precipitation indices resulted in a greater number of smaller, spatially coherent groups exhibiting similar modes of variability. This classification regime illustrates important variations in extremes that exist on subregional scales. These findings have relevance for established climate research institutes, local governments, resource managers, and community planners interested in the variability of extreme events throughout the region.
Mechanical properties of the lung were studied in nine healthy lowlanders during a 6-day sojourn at an altitude of 3,457 m. In comparison to sea-level values, it was found at altitude that 1) lung volumes measured by plethysmography including total lung capacity, vital capacity, and functional residual capacity (FRC) presented small changes not exceeding 300 ml; 2) static and dynamic lung compliances were not modified but static pressure-volume curves of lungs were shifted progressively to the left (the decrease in lung elastic recoil averaged about 2 cmH2O on days 4-6); and 3) maximal midexpiratory flow, forced expiratory volume in 1 s, and maximal expiratory and inspiratory flows were increased and, conversely, airways and pulmonary flow resistances were decreased on most days at altitude. The unchanged FRC in the face of a decreased lung recoil may be explained by an increase in thoracic blood volume at altitude, but other possible mechanisms are discussed. The decrease in resistances and increase in maximal flows may be partly explained by the decreased air density at altitude, but another contributing factor such as a bronchodilatation is also suggested. It is proposed that changes in lung mechanics at altitude may account for some of the changes in the pattern of breathing and mouth occlusion pressure (P0.1) observed during acclimatization of lowlanders to altitude.
The resilience of socio-ecological systems to sea level rise, storms and flooding can be enhanced when coastal habitats are used as natural infrastructure. Grey infrastructure has long been used for coastal flood protection but can lead to unintended negative impacts. Natural infrastructure often provides similar services as well as added benefits that support short-and long-term biological, cultural, social, and economic goals. While natural infrastructure is becoming more widespread in practice, it often represents a relatively small fraction within portfolios of coastal risk-reducing strategies compared to more traditional grey infrastructure. This study provides a comprehensive review of how natural infrastructure is being used along the United States Atlantic, Gulf of Mexico, and Caribbean coasts related to four habitatstidal marshes, beaches and barrier islands, mangroves, and biogenic reefs. We compare information on the benefits, opportunities and challenges of implementing natural, grey and hybrid infrastructure in the coastal zone. In addition, we present a suite of actions to increase information and reduce uncertainty so that coastal mangers and planners are aware of the full suite of options for restoration, conservation and planning that maximize ecosystem services over short-and long-term planning horizons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.