We can recover genetic information from organisms of all kinds using environmental sampling. In recent years, sequencing this environmental DNA (eDNA) has become a tractable means of surveying many species using water, air, or soil samples. The technique is beginning to become a core tool for ecologists, environmental scientists, and biologists of many kinds, but the temporal resolution of eDNA sampling is often unclear, limiting the ecological interpretations of the resulting datasets. Here, in a temporally and spatially replicated field study using ca. 313 bp of eukaryotic COI mtDNA as a marker, we find that nearshore organismal communities are largely consistent across tides. Our findings suggest that nearshore eDNA from both benthic and planktonic taxa tends to be endogenous to the site and water mass sampled, rather than changing with each tidal cycle. However, where physiochemical water mass characteristics change, we find that the relative contributions of a broad range of organisms to eDNA communities shift in concert.
Background: Several long noncoding RNAs (lncRNAs) have been shown to function as components of molecular machines that play fundamental roles in biology. While the number of annotated lncRNAs in mammalian genomes has greatly expanded, studying lncRNA function has been a challenge due to their diverse biological roles and because lncRNA loci can contain multiple molecular modes that may exert function. Results: We previously generated and characterized a cohort of 20 lncRNA loci knockout mice. Here, we extend this initial study and provide a more detailed analysis of the highly conserved lncRNA locus, taurine-upregulated gene 1 (Tug1). We report that Tug1-knockout male mice are sterile with underlying defects including a low number of sperm and abnormal sperm morphology. Because lncRNA loci can contain multiple modes of action, we wanted to determine which, if any, potential elements contained in the Tug1 genomic region have any activity. Using engineered mouse models and cell-based assays, we provide evidence that the Tug1 locus harbors two distinct noncoding regulatory activities, as a cis-DNA repressor that regulates neighboring genes and as a lncRNA that can regulate genes by a trans-based function. We also show that Tug1 contains an evolutionary conserved open reading frame that when overexpressed produces a stable protein which impacts mitochondrial membrane potential, suggesting a potential third coding function. Conclusions: Our results reveal an essential role for the Tug1 locus in male fertility and uncover evidence for distinct molecular modes in the Tug1 locus, thus highlighting the complexity present at lncRNA loci.
An extensive array of reproductive traits varies among species, yet the genetic mechanisms that enable divergence, often over short evolutionary timescales, remain elusive. Here we examine two sister-species of Peromyscus mice with divergent mating systems. We find that the promiscuous species produces sperm with longer midpiece than the monogamous species, and midpiece size correlates positively with competitive ability and swimming performance. Using forward genetics, we identify a gene associated with midpiece length: Prkar1a, which encodes the R1α regulatory subunit of PKA. R1α localizes to midpiece in Peromyscus and is differentially expressed in mature sperm of the two species yet is similarly abundant in the testis. We also show that genetic variation at this locus accurately predicts male reproductive success. Our findings suggest that rapid evolution of reproductive traits can occur through cell type-specific changes to ubiquitously expressed genes and have an important effect on fitness.
Organisms of all kinds leave genetic traces in their environments, and in recent years, sequencing this environmental DNA (eDNA) has become a tractable means of surveying many species using water, air, or soil samples. The technique is beginning to become a core tool for ecologists, environmental scientists, and biologists of many kinds, but the temporal resolution of eDNA sampling is often unclear, limiting the ecological interpretations of the resulting datasets. Here, in a temporally and spatially replicated field study using ca. 330bp of eukaryotic COI mtDNA as a marker, we find that nearshore organismal communities are largely consistent across tides. Our findings suggest that nearshore eDNA tends to be endogenous to the site and water mass sampled, rather changing systematically as waters change over during the tidal cycle. However, where water-mass characteristics change, we find that the eDNA communities change in concert, again suggesting a close association between the habitat sampled and the eDNA community recovered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.