Critical cancer pathways often cannot be targeted because of limited efficiency crossing cell membranes. Here we report the development of a Salmonella-based intracellular delivery system to address this challenge. We engineer genetic circuits that (1) activate the regulator flhDC to drive invasion and (2) induce lysis to release proteins into tumor cells. Released protein drugs diffuse from Salmonella containing vacuoles into the cellular cytoplasm where they interact with their therapeutic targets. Control of invasion with flhDC increases delivery over 500 times. The autonomous triggering of lysis after invasion makes the platform self-limiting and prevents drug release in healthy organs. Bacterial delivery of constitutively active caspase-3 blocks the growth of hepatocellular carcinoma and lung metastases, and increases survival in mice. This success in targeted killing of cancer cells provides critical evidence that this approach will be applicable to a wide range of protein drugs for the treatment of solid tumors.
No abstract
Current facemask research focuses on material characterization and efficiency; however, facemasks are often not tested such that aerosol distributions are evaluated from the gaps in the sides, bottom, and nose areas. Poor evaluation methods could lead to misinformation on optimal facemasks use; a high-throughput, reproducible method which illuminates the issue of fit influencing aerosol transmission is needed. To this end, we have created an in vitro model to quantify particle transmission by mimicking exhalation aerosols in a 3D printed face-nose-mouth replica via a nebulizer and quantifying particle counts using a hand-held particle counter. A sewn, sewn with pipe cleaner nose piece, and sewn with a coffee filter facemask were used to evaluate current common homemade sewn facemask designs, benchmarked against industry standard surgical, N95 respirator tightly fit, and N95 respirator loosely fit facemasks. All facemasks have significantly reduced particle counts in front of the facemask, but the side and top of the facemask showed increases in particle counts over the no facemask condition at that same position, suggesting that some proportion of aerosols are being redirected to these gaps. An altered size distribution of aerosols that escape at the vulnerable positions was observed; escaped particles have larger count median diameters, with a decreased ratio of smaller to larger particles, possibly due to hygroscopic growth or aggregation. Of the homemade sewn facemasks, the facemask with a coffee filter insert performed the best at reducing escaped aerosols, with increased efficiency also observed for sewn masks with a pipe cleaner nose piece. Importantly, there were minimal differences between facemasks at increasing distances, which supports that social distance is a critical element in reducing aerosol transmission. This work brings to light the importance of quantifying particle count in positions other than directly in front of the facemask and identifies areas of research to be explored.
Background: Delivery of aerosols to isolated lobes of the lungs would be beneficial for diseases that have lobespecific effects, such as cancer, pneumonia, and chronic obstructive pulmonary disorder. Recent computational fluid-particle dynamic (CFPD) modeling has demonstrated that in low flow rates, the inlet location of a particle at the mouth dictates the lobe into which it will deposit. However, realization of this lobe-specific deposition has yet to be attempted experimentally or in the clinic. To address this, we sought to develop a proof-of-concept in vitro model and targeting device for achieving lobe-specific delivery. Methods: Using 3D printing, a lung replica was created from a computed tomography scan of a healthy 47year-old male volunteer and connected to a flow setup to control inlet flow rate and outlet airflow distribution to each lobe. A device was designed and fabricated that directs particles to an inlet location that is 5% of the total inlet area and described by radial coordinates (r,h). Filter paper at sampling ports for each lobe was used to capture fluorescent polystyrene particles to quantify particle collection. We evaluated lobe-specific targeting at varied inlet coordinates, particle diameters, inlet flow rates, and disease lobe flow rate distribution profiles. Results: Guided by CFPD modeling, inlet locations were identified that increased particle collection to a target lobe between 63% and 90%. For example, release of fluorescent particles at the inlet location r ¼ 4.67 mm, h ¼ 252°with respect to the center of the inlet using 1 lm particles, 1 L/min inlet flow rate, and healthy subject lobe flow distribution profile yielded 90% of the aerosol dose to the right upper lobe, corresponding to an increase of 4.6 • above the non-targeted percent particle collection. Particle size, inlet flow rate, and disease airflow distributions were all shown to generally decrease the efficiency of lobe-specific targeting. Conclusions: Our results indicate that aerosol targeting of a specific lobe is possible in vitro under optimized conditions and that controlling inlet locations could be a potentially useful method for treatment of lobe-specific diseases. This is the first demonstration of lobe-specific particle collection in a physical lung model and illuminates numerous challenges that will be faced as this method is translated to clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.