No abstract
Mucosal surfaces are key interfaces between the host and its environment but also constitute ports of entry for numerous pathogens. The gut and lung mucosae act as points of nutrient and gas exchange, respectively, but the physiological purpose of the female reproductive tract (FRT) is to allow implantation and development of the foetus. Our understanding of immune responses in the FRT has traditionally lagged behind our grasp of the situation at other mucosal sites but recently reproductive immunologists have begun to make rapid progress in this challenging area. Here, we review current knowledge of immune responses in the human FRT and their heterogeneity within and between compartments. In the commensal-rich vagina, the immune system must allow the growth of beneficial microbes, whereas the key challenge in the uterus is allowing the growth of the semi-allogeneic foetus.In both compartments, these objectives must be balanced with the need to eliminate pathogens. Our developing understanding of immune responses in the FRT will help us develop interventions to prevent the spread of sexually transmitted diseases and to improve outcomes of pregnancy for mothers and babies.
Uterine natural killer cells (uNK) play an important role in promoting successful pregnancy by regulating trophoblast invasion and spiral artery remodelling in the first trimester. Recently, single-cell RNA sequencing (scRNAseq) on first-trimester decidua showed that uNK can be divided into three subsets, which may have different roles in pregnancy. Here we present an integration of previously published scRNAseq datasets, together with novel flow cytometry data to interrogate the frequency, phenotype, and function of uNK1–3 in seven stages of the reproductive cycle (menstrual, proliferative, secretory phases of the menstrual cycle; first, second, and third trimester; and postpartum). We found that uNK1 and uNK2 peak in the first trimester, but by the third trimester, the majority of uNK are uNK3. All three subsets are most able to degranulate and produce cytokines during the secretory phase of the menstrual cycle and express KIR2D molecules, which allow them to interact with HLA-C expressed by placental extravillous trophoblast cells, at the highest frequency during the first trimester. Taken together, our findings suggest that uNK are particularly active and able to interact with placental cells at the time of implantation and that uNK1 and uNK2 may be particularly involved in these processes. Our findings are the first to establish how uNK frequency and function change dynamically across the healthy reproductive cycle. This serves as a platform from which the relationship between uNK function and impaired implantation and placentation can be investigated. This will have important implications for the study of subfertility, recurrent miscarriage, pre-eclampsia, and pre-term labour.
Antigen-specific immunotherapy of autoimmune disease currently remains the only potentially curative approach. However, translation of promising pre-clinical results into successful clinical application has proven challenging. In part, this is because pre-clinical findings in mouse models have to be redesigned for human application due to differences in MHC II. To reduce the gap between pre-clinical and clinical studies, we have created a novel mouse model that expresses human HLA-DR4, but no endogenous MHC on antigen-presenting cells. Moreover, human B7.1 (CD80) is expressed in the pancreatic islets under the control of the rat insulin promoter. Although this model does not develop diabetes spontaneously, it is susceptible to the induction of type 1 diabetes by challenging mice with overlapping peptides derived from murine proinsulin-2 in adjuvant. Unlike the NOD model of spontaneous type 1 diabetes, but akin to the human condition, this model does not have a gender bias. Furthermore, similar to the human condition, the disease is characterised by a diverse leucocyte infiltration of the pancreatic islets and the formation of anti-proinsulin auto-antibodies. The model that we report here offers detailed insights into type-1 diabetes and is expected to prove instrumental when studying the mechanism of action in translational, antigen-specific immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.