17-alpha ethinylestradiol (EE2), a pharmaceutical estrogen, is detectable in water systems worldwide. Although studies report on the effects of xenoestrogens in tissues such as liver and gonad, few studies to date have investigated the effects of EE2 in the vertebrate brain at a large scale. The purpose of this study was to develop a goldfish brain-enriched cDNA array and use this in conjunction with a mixed tissue carp microarray to study the genomic response to EE2 in the brain. Gonad-intact male goldfish were exposed to nominal concentrations of 0.1 nM (29.6 ng/l) and 1.0 nM (296 ng/l) EE2 for 15 days. Male goldfish treated with the higher dose of EE2 had significantly smaller gonads compared with controls. Males also had a significantly reduced level of circulating testosterone (T) and 17beta-estradiol (E2) in both treatment groups. Candidate genes identified by microarray analysis fall into functional categories that include neuropeptides, cell metabolism, and transcription/translation factors. Differentially expressed genes verified by real-time RT-PCR included brain aromatase, secretogranin-III, and interferon-related developmental regulator 1. Our results suggest that the expression of genes in the sexually mature adult brain appears to be resistant to low EE2 exposure but is affected significantly at higher doses of EE2. This study demonstrates that microarray technology is a useful tool to study the effects of endocrine disrupting chemicals on neuroendocrine function and suggest that exposure to EE2 may have significant effects on localized E2 synthesis in the brain by affecting transcription of brain aromatase.
While the reproductive and thyroidal systems are extensively studied in fish, they are largely studied in isolation from one another, but there is evidence supporting cross-regulation between these two systems. To better understand hormone action and the potential cross-regulation between estrogen and thyroid hormones, we examined gene expression changes in estrogen receptor (ER) and thyroid receptor (TR) subtypes and key enzymes responsible for the local synthesis and availability of estrogen and thyroid hormones (aromatase B and deiodinase, respectively) in sexually regressed, adult, male goldfish in response to 3 days waterborne exposures to 17β-estradiol (E2; 1 nM), triiodothyronine (T3; 20 and 100 nM), and co-treatments thereof. Treatments with E2 alone did not effect ER subtype transcripts in the liver, telencephalon, or testis; however, in the testis, 1 nM T3 decreased ERα and ERβ1 and co-treatments of T3 and E2 decreased ERβ1 levels. TRα-1 and TRβ transcripts were not auto-regulated by T3 or cross-regulated by E2. Although deiodinase type I levels were also unaffected, deiodinase type II decreased in response to T3 treatments. Liver deiodinase type III transcripts increased in response to T3 treatments, while E2 exhibited antagonistic effects on this T3-mediated induction. These results provide novel evidence of cross-talk between the reproductive and thyroid endocrine axes in a model teleost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.