Spatial responses of species to past climate change depend on both intrinsic traits (climatic niche breadth, dispersal rates) and the scale of climatic fluctuations across the landscape. New capabilities in generating and analysing population genomic data, along with spatial modelling, have unleashed our capacity to infer how past climate changes have shaped populations, and by extension, complex communities. Combining these approaches, we uncover lineage diversity across four codistributed lizards from the Australian Monsoonal Tropics and explore how varying climatic tolerances interact with regional climate history to generate common vs. disparate responses to late Pleistocene change. We find more divergent spatial structuring and temporal demographic responses in the drier Kimberley region compared to the more mesic and consistently suitable Top End. We hypothesize that, in general, the effects of species' traits on sensitivity to climate fluctuation will be more evident in climatically marginal regions. If true, this points to the need in climatically marginal areas to craft more species-(or trait)-specific strategies for persistence under future climate change.
The estimation of robust and accurate measures of branch support has proven challenging in the era of phylogenomics. In data sets of potentially millions of sites, bootstrap support for bifurcating relationships around very short internal branches can be inappropriately inflated. Such overestimation of branch support may be particularly problematic in rapid radiations, where phylogenetic signal is low and incomplete lineage sorting severe. Here, we explore this issue by comparing various branch support estimates under both concatenated and coalescent frameworks, in the recent radiation Australo-Papuan murine rodents (Muridae: Hydromyini). Using nucleotide sequence data from 1245 independent loci and several phylogenomic inference methods, we unequivocally resolve the majority of genus-level relationships within Hydromyini. However, at four nodes we recover inconsistency in branch support estimates both within and among concatenated and coalescent approaches. In most cases, concatenated likelihood approaches using standard fast bootstrap algorithms did not detect any uncertainty at these four nodes, regardless of partitioning strategy. However, we found this could be overcome with two-stage resampling, that is, across genes and sites within genes (using -bsam GENESITE in IQ-TREE). In addition, low confidence at recalcitrant nodes was recovered using UFBoot2, a recent revision to the bootstrap protocol in IQ-TREE, but this depended on partitioning strategy. Summary coalescent approaches also failed to detect uncertainty under some circumstances. For each of four recalcitrant nodes, an equivalent (or close to equivalent) number of genes were in strong support ($>$ 75% bootstrap) of both the primary and at least one alternative topological hypothesis, suggesting notable phylogenetic conflict among loci not detected using some standard branch support metrics. Recent debate has focused on the appropriateness of concatenated versus multigenealogical approaches to resolving species relationships, but less so on accurately estimating uncertainty in large data sets. Our results demonstrate the importance of employing multiple approaches when assessing confidence and highlight the need for greater attention to the development of robust measures of uncertainty in the era of phylogenomics.
Australia has the highest historically recorded rate of mammalian extinction in the world, with 34 terrestrial species declared extinct since European colonization in 1788. Among Australian mammals, rodents have been the most severely affected by these recent extinctions; however, given a sparse historical record, the scale and timing of their decline remain unresolved. Using museum specimens up to 184 y old, we generate genomic-scale data from across the entire assemblage of Australian hydromyine rodents (i.e., eight extinct species and their 42 living relatives). We reconstruct a phylogenomic tree for these species spanning ∼5.2 million years, revealing a cumulative total of 10 million years (>10%) of unique evolutionary history lost to extinction within the past ∼150 y. We find no evidence for reduced genetic diversity in extinct species just prior to or during decline, indicating that their extinction was extremely rapid. This suggests that populations of extinct Australian rodents were large prior to European colonization, and that genetic diversity does not necessarily protect species from catastrophic extinction. In addition, comparative analyses suggest that body size and biome interact to predict extinction and decline, with larger species more likely to go extinct. Finally, we taxonomically resurrect a species from extinction, Gould’s mouse (Pseudomys gouldii Waterhouse, 1839), which survives as an island population in Shark Bay, Western Australia (currently classified as Pseudomys fieldi Waite, 1896). With unprecedented sampling across a radiation of extinct and living species, we unlock a previously inaccessible historical perspective on extinction in Australia. Our results highlight the capacity of collections-based research to inform conservation and management of persisting species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.