The EUNIS (European Union Nature Information System) habitat classification system aims to provide a common European reference set of habitat types within a hierarchical classification, and to cover all terrestrial, freshwater and marine habitats of Europe. The classification facilitates reporting of habitat data in a comparable manner, for use in nature conservation (e.g. inventories, monitoring and assessments), habitat mapping and environmental management. For the marine environment the importance of a univocal habitat classification system is confirmed by the fact that many European initiatives, aimed at marine mapping, assessment and reporting, are increasingly using EUNIS habitat categories and respective codes. For this reason substantial efforts have been made to include information on marine benthic habitats from different regions, aiming to provide a comprehensive geographical coverage of European seas. However, there still remain many concerns on its applicability as only a small fraction of Europe's seas are fully mapped and increasing knowledge and application raise further issues to be resolved. This paper presents an overview of the main discussion and conclusions of a workshop, organised by the MeshAtlantic project, focusing upon the experience in using the EUNIS habitats classification across different countries and seas, together with case studies. The aims of the meeting were to: (i) bring together scientists with experience in the use of the EUNIS marine classification and representatives from the European Environment Agency (EEA); (ii) agree on enhancements to EUNIS that ensure an improved representation of the European marine habitats; and (iii) establish practices that make marine habitat maps produced by scientists more consistent with the needs of managers and decision-makers. During the workshop challenges for the future development of EUNIS were identified, which have been classified into five categories: (1) structure and hierarchy; (2) biology; (3) terminology; (4) mapping; and (5) future development. The workshop ended with a declaration from the attendees, with recommendations to the EEA and European Topic Centre on Biological Diversity, to take into account the outputs of the workshop, which identify weaknesses in the current classification and include proposals for its modification, and to devise a process to further develop the marine component of the EUNIS habitat classification.
Creating a habitat classification and mapping system for marine and coastal ecosystems is a daunting challenge due to the complex array of habitats that shift on various spatial and temporal scales. To meet this challenge, several countries have, or are developing, national classification systems and mapping protocols for marine habitats. To be effectively applied by scientists and managers it is essential that classification systems be comprehensive and incorporate pertinent physical, geological, biological, and anthropogenic habitat characteristics. Current systems tend to provide over-simplified conceptual structures that do not capture biological habitat complexity, marginalize anthropogenic features, and remain largely untested at finer scales. We propose a multi-scale hierarchical framework with a particular focus on finer scale habitat classification levels and conceptual schematics to guide habitat studies and management decisions. A case study using published data is included to compare the proposed framework with existing schemes. The example demonstrates how the proposed framework's inclusion of user-defined variables, a combined top-down and bottom-up approach, and multi-scale hierarchical organization can facilitate examination of marine habitats and inform management decisions.
Citation/Publisher Attribution Stolt, M.; Bradley, M.; Turenne, J.; Payne, M.; Scherer, E.; Cicchetti, G.; Chumchenia, E.; GUARINELLO, M.; KING, J.; Boothroyd, J.; OAKLEY, B.; Thornber, C., and AUGUST, P., 2011. Mapping shallow coastal ecosystems: a case study of a Rhode Island lagoon. In order to effectively study, manage, conserve, and sustain shallow-subtidal ecosystems, a spatial inventory of the basic resources and habitats is essential. Because of the complexities of shallow-subtidal substrates, benthic communities, geology, geomorphology, and water column attributes, few standard protocols are fully articulated and tested that describe the mapping and inventory processes and accompanying interpretations. In this paper, we describe a systematic approach to map Rhode Island's shallow-subtidal coastal lagoon ecosystems, by using, integrating, and reconciling multiple data sets to identify the geology, soils, biological communities, and environments that, collectively, define each shallow-subtidal habitat. We constructed maps for these lagoons via a deliberate, step by step approach. Acoustics and geostatistical modeling were used to create a bathymetric map. These data were analyzed to identify submerged landforms and geologic boundaries. Geologic interpretations were verified with video and grab samples. Soils were sampled, characterized, and mapped within the context of the landscape and geologic boundaries. Biological components and distributions were investigated using acoustics, grab samples, video, and sediment profile images. Data sets were cross-referenced and ground-truthed to test for inconsistencies. Maps and geospatial data, with Federal Geographic Data Committee (FGDC)-compliant metadata, were finalized after reconciling data set inconsistencies and made available on the Internet. These data allow for classification in the revised Coastal and Marine Ecological Classification Standard (CMECS). With these maps, we explored potential relationships among and between physical and biological parameters. In some cases, we discovered a clear match between habitat measures; in others, however, relationships were more difficult to distinguish and require further investigation.
Coastal storms are the primary drivers of coastal change, but submerged areas historically have been difficult to map and consequently to document change. Hurricane Sandy had a dramatic impact along coastal areas in proximity to landfall in late October 2012 and those impacts have been well-documented in terrestrial coastal settings, however, due to the lack of data on submerged marine habitats similar studies have been limited. One of the motivations for this study was to provide park managers with a baseline inventory of submerged marine habitats to measure change during future storm events. A three-year study to map submerged habitats in Cape Cod National Seashore was recently completed. This was one of four contemporaneous studies that developed maps of submerged shallow water marine habitat in and around coastal national parks along the east coast of the United States. These four projects used similar methods of data collection, processing and analysis for the production of benthic habitat maps. Data from a phase-measuring sidescan sonar, bottom grab samples, seismic reflection profiling, and sediment coring we all used to develop submerged marine habitat maps using the Coastal and Marine Ecological Classification Standards (CMECS) in Cape Cod National Seashore. Over 76 vessel-based acoustic surveys were conducted in extreme shallow water, across four embayments from 2014-2016. Sidescan sonar imagery totaling 83.1 km2 were collected and within that area 61.3 square kilometres of collocated bathymetric data were collected with a mean depth of 4.6 m. Bottom grab samples (n = 476) and ancillary data were collected, macroinvertebrates were identified and used within the CMECS framework along with the geophysical and coring data to develop final habitat maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.