Reef-building corals host assemblages of symbiotic algae (Symbiodinium spp.) whose diversity and abundance may fluctuate under different conditions, potentially facilitating acclimatization to environmental change. The composition of free-living Symbiodinium in reef waters and sediments may also be environmentally labile and may influence symbiotic assemblages by mediating supply and dispersal. The magnitude and spatial scales of environmental influence over Symbiodinium composition in different reef habitat compartments are, however, not well understood. We used pyrosequencing to compare Symbiodinium in sediments, water, and ten coral species between two backreef pools in American Samoa with contrasting thermal environments. We found distinct compartmental assemblages of clades A, C, D, F, and/or G Symbiodinium types, with strong differences between pools in water, sediments, and two coral species. In the pool with higher and more variable temperatures, abundance of various clade A and C types differed compared to the other pool, while abundance of D types was lower in sediments but higher in water and in Pavona venosa, revealing an altered habitat distribution and potential linkages among compartments. The lack of between-pool effects in other coral species was due to either low overall variability (in the case of Porites) or high within-pool variability. Symbiodinium communities in water and sediment also showed within-pool structure, indicating that environmental influences may operate over multiple, small spatial scales. This work suggests that Symbiodinium composition is highly labile in reef waters, sediments, and some corals, but the underlying drivers and functional consequences of this plasticity require further testing with high spatial resolution biological and environmental sampling.
Creating a habitat classification and mapping system for marine and coastal ecosystems is a daunting challenge due to the complex array of habitats that shift on various spatial and temporal scales. To meet this challenge, several countries have, or are developing, national classification systems and mapping protocols for marine habitats. To be effectively applied by scientists and managers it is essential that classification systems be comprehensive and incorporate pertinent physical, geological, biological, and anthropogenic habitat characteristics. Current systems tend to provide over-simplified conceptual structures that do not capture biological habitat complexity, marginalize anthropogenic features, and remain largely untested at finer scales. We propose a multi-scale hierarchical framework with a particular focus on finer scale habitat classification levels and conceptual schematics to guide habitat studies and management decisions. A case study using published data is included to compare the proposed framework with existing schemes. The example demonstrates how the proposed framework's inclusion of user-defined variables, a combined top-down and bottom-up approach, and multi-scale hierarchical organization can facilitate examination of marine habitats and inform management decisions.
Benthic assessment techniques utilized in soft sediment areas are of limited utility in glacial moraine habitats that are structurally complex and largely composed of hard substrata. We present a multi-modal approach consisting of multibeam bathymetry, video, and still imagery that collectively provides the knowledge base necessary to perform impact assessments in these habitats. Baseline and post-construction surveys were conducted adjacent to the Block Island Wind Farm to develop and test these methodologies within the context of offshore wind development, specifically for detecting and documenting anchoring-related impacts to moraine habitats. Habitat data were evaluated using the substrate and biotic components of the national classification standard, the Coastal and Marine Ecological Classification Standard, recommended by federal regulators, with modifications to present results in terms of predicted vulnerability to disturbance. Habitats near the wind farm were diverse and patchy, ranging from rippled gravelly sand to continuous cobble/boulder fields with high biotic cover. Anchor furrows were detected in moderate value habitats in bathymetric and video data. The multi-modal survey approach tested at the Block Island Wind Farm and presented here is now specifically recommended by federal agencies and is being used to inform efforts currently underway to map and assess benthic habitats for a number of U.S. projects seeking federal permits.
Citation/Publisher Attribution Stolt, M.; Bradley, M.; Turenne, J.; Payne, M.; Scherer, E.; Cicchetti, G.; Chumchenia, E.; GUARINELLO, M.; KING, J.; Boothroyd, J.; OAKLEY, B.; Thornber, C., and AUGUST, P., 2011. Mapping shallow coastal ecosystems: a case study of a Rhode Island lagoon. In order to effectively study, manage, conserve, and sustain shallow-subtidal ecosystems, a spatial inventory of the basic resources and habitats is essential. Because of the complexities of shallow-subtidal substrates, benthic communities, geology, geomorphology, and water column attributes, few standard protocols are fully articulated and tested that describe the mapping and inventory processes and accompanying interpretations. In this paper, we describe a systematic approach to map Rhode Island's shallow-subtidal coastal lagoon ecosystems, by using, integrating, and reconciling multiple data sets to identify the geology, soils, biological communities, and environments that, collectively, define each shallow-subtidal habitat. We constructed maps for these lagoons via a deliberate, step by step approach. Acoustics and geostatistical modeling were used to create a bathymetric map. These data were analyzed to identify submerged landforms and geologic boundaries. Geologic interpretations were verified with video and grab samples. Soils were sampled, characterized, and mapped within the context of the landscape and geologic boundaries. Biological components and distributions were investigated using acoustics, grab samples, video, and sediment profile images. Data sets were cross-referenced and ground-truthed to test for inconsistencies. Maps and geospatial data, with Federal Geographic Data Committee (FGDC)-compliant metadata, were finalized after reconciling data set inconsistencies and made available on the Internet. These data allow for classification in the revised Coastal and Marine Ecological Classification Standard (CMECS). With these maps, we explored potential relationships among and between physical and biological parameters. In some cases, we discovered a clear match between habitat measures; in others, however, relationships were more difficult to distinguish and require further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.