Thyroid-stimulating hormone (TSH), a central neuroendocrine mediator of the hypothalamus-pituitary-thyroid axis, has been shown to affect various aspects of immunological development and function. To gain a better understanding of TSH involvement within the mammalian immune system, the expression and distribution of the TSH receptor (TSHr) has been studied by immunoprecipitation and by flow cytometric analyses. Using highly enriched populations of B cells, T cells, and dendritic cells, trace amounts of TSHr were precipitated from B cells and T cells, whereas high levels of TSHr were precipitated from the dendritic cell fraction. Flow cytometric analyses of TSHr expression on splenic and lymph node T cells revealed a major difference between those tissues in that only 2–3% of splenic T cells were TSHr+, whereas 10–20% of CD4+8− and CD4−8+ lymph node T cells expressed the TSHr, which was exclusively associated with CD45RBhigh cells and was not expressed during or after activation. The TSHr was not present on cells of the immune system during fetal or neonatal life. However, recombinant TSHβ was found to significantly enhance the phagocytic activity of dendritic cells from adult animals and to selectively augment IL-1β and IL-12 cytokine responses of dendritic cells following phagocytic activation. These findings identify a novel immune-endocrine bridge associated with professional APCs and naive T cells.
Sevoflurane and isoflurane preconditioning ameliorates inflammation, cerebral lipid peroxidation, and histologic injury. Downregulation of proapoptotic molecules and upregulation of antiapoptotic molecules may be associated with this effect.
Smart materials have been attracting much attention because of their stimuli responsive nature. We have synthesized biocompatible thermoresponsive crosslinked poly(ethylene glycol) methyl ether methacrylate (PEGMA)-co-vinyl pyrrolidone nanoparticles (PEGMA NPs) using disulfide-based crosslinker by surfactant-free emulsion polymerization method. Particle characterization studies were carried out by dynamic light scattering, and scanning electron microscopy. Polymerization kinetics, effect of crosslinker and initiator concentrations on both average hydrodynamic diameter and polydispersity index were investigated. Hydrodynamic diameters of thermoresponsive PEGMA NPs were decreased from 210 nm to 90 nm upon heating over the lowest critical solution temperature (LCST). Disulfide crosslinked PEGMA NPs were demonstrated as a dual delivery system. Rhodamine B, a model of small-sized drug molecule, and poly(ethylene glycol) (PEG)-alizarin yellow, a model of large drug molecule, were loaded into PEGMA NPs where LCST of these NPs was tuned to 37°C, the body temperature. The rhodamine B was released from PEGMA NPs upon heating to 39°C. Then, PEG-alizarin content was released by subsequent degradation of nanoparticles using dithiothreitol (DTT), which reduces disulfide bonds to thiols. Furthermore, cytotoxicity studies of PEGMA NPs were carried out in 3T3 cells, which resulted in no toxic effect on the cells.
The results indicated that high TH17/Treg ratio exists inrheumatic MVD. This imbalance may play a role in the pathogenesis, and TH17/Treg balance may be a promising therapeutic approach in RHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.