Photodynamic therapy (PDT) with the pro-drugs 5-aminolevulinic acid (ALA) or methyl aminolevulinate (MAL) utilizes the combined interaction of a photosensitizer, light and molecular oxygen to ablate tumor tissue. To potentially increase accumulation of the photosensitizer, protoporphyrin IX (PpIX), within tumor cells an iron chelator can be employed. This study analyzed the effects of ALA/MAL-induced PDT combined with the iron chelator 1, 2-diethyl-3-hydroxypyridin-4-one hydrochloride (CP94) on the accumulation of PpIX in human glioma cells in vitro. Cells were incubated for 0, 3 and 6h with various concentrations of ALA/MAL with or without CP94 and the resulting accumulations of PpIX, which naturally fluoresces, were quantified prior to and following light irradiation. In addition, counts of viable cells were recorded. The use of CP94 in combination with ALA/MAL produced significant enhancements of PpIX fluorescence in human glioma cells. At the highest concentrations of each prodrug, CP94 enhanced PpIX fluorescence significantly at 3h for ALA and by more than 50% at 6h for MAL. Cells subsequently treated with ALA/MAL-induced PDT in combination with CP94 produced the greatest cytotoxicity. It is therefore concluded that with further study CP94 may be a useful adjuvant to photodiagnosis and/or PpIX-induced PDT treatment of glioma.
Methyl aminolevulinate photodynamic therapy (MAL-PDT) (a topical treatment used for a number of pre-cancerous skin conditions) utilizes the combined interaction of a photosensitizer (protoporphyrin IX (PpIX)), light of the appropriate wavelength and molecular oxygen to produce singlet oxygen and other reactive oxygen species which induce cell death. During treatment localized oxygen depletion occurs and is thought to contribute to decreased efficacy.The aim of this study was to investigate whether an oxygen pressure injection (OPI) device had an effect on localized oxygen saturation levels and/or PpIX fluorescence of skin lesions during MAL-PDT. This study employed an OPI device to apply oxygen under pressure to the skin lesions of patients undergoing standard MAL-PDT. Optical reflectance spectrometry and fluorescence imaging were used to non-invasively monitor the localized oxygen saturation and PpIX fluorescence of the treatment area respectively. No significant changes in oxygen saturation were observed when these data were combined for the group with OPI and compared to the group that received standard MAL-PDT without OPI. Additionally no significant difference in PpIX photobleaching or clinical outcome at three months between the groups of patients was observed although the group that received standard MAL-PDT demonstrated a significant increase (p<0.05) in PpIX fluorescence initially and both groups produced a significant decrease (p<0.05) after light irradiation. In conclusion, with this sample size this OPI device was not found to be an effective method with which to improve tissue oxygenation during MAL-PDT. Further investigation is therefore required to find a more effective method of MAL-PDT enhancement.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.