Time-resolved photoelectron imaging was used to study non-adiabatic relaxation dynamics in gas-phase indole following photo-excitation at 267 nm and 258 nm. Our data analysis was supported by various ab initio calculations using both coupled cluster and density functional methods. The highly differential energy- and angle-resolved information provided by our experimental approach provides extremely subtle details of the complex interactions occurring between several low-lying electronically excited states. In particular, new insight into the role and fate of the mixed Rydberg-valence 3s/πσ* state is revealed. This includes population residing on the excited state surface at large N-H separations for a relatively long period of time (∼1 ps) prior to dissociation and/or internal conversion. Our findings may, in part, be rationalized by considering the rapid evolution of this state's electronic character as the N-H stretching coordinate is extended - as extensively demonstrated in the supporting theory. Overall, our findings highlight a number of important general caveats regarding the nature of mixed Rydberg-valence excited states, their spectral signatures and detection sensitivity in photoionization measurements, and the evaluation of their overall importance in mediating electronic relaxation in a wide range of small model-chromophore systems providing bio-molecular analogues - a topic of considerable interest within the chemical dynamics community over the last decade.
We report on calculations—using the LEVEL and BCONT programs by Le Roy, the latter of which is a version modified by B. McGeehan—of the dependence of the radiative lifetime of the Na2 sodium dimer 41Σg+ shelf-state on the initial vibrational and rotational level for corresponding quantum numbers of 0 ≤ v ≤ 75 and 0 ≤ J ≤ 90, respectively. We also present experimental lifetime values for 43 < v < 64, averaged over J = 19 and 21, obtained by a delayed pump-probe method using a previously described molecular beam and time-of-flight apparatus. Our calculated results are based on all possible dipole allowed transitions (to the 21Σu+, 1(B)1Πu, and 1(A)1Σu+ electronic states) terminating into bound as well as free final states. The shelf of the initial electronic state is a consequence of configuration interaction with the lowest Na+–Na− ion-pair potential and occurs, for the rotationless molecule, at the vibrational level v = 52. From the 41Σg+ vibrational ground state to the shelf, the calculated lifetimes increase monotonically by a factor of about 3.8. Beyond around v = 52, depending on rotational excitation, the lifetimes decrease, settling to a value intermediate to the maximum and the minimum at v = 0. Within error bars and in the range available, our experimental data are compatible with these findings. In addition, our calculations reveal unusual and pronounced oscillatory variation of the lifetime with rotational quantum numbers for fixed vibrational levels above—but not below—the shelf. We discuss our findings in terms of the appropriate transition dipole moments and wavefunctions and provide a detailed comparison to recent lifetime calculations of sodium dimer ion-pair states [Sanli et al., J. Chem. Phys. 143, 104304 (2015)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.