Exposure to radiofrequency (RF) electromagnetic fields (EMFs) in indoor environments depends on both outdoor sources such as radio, television and mobile phone antennas and indoor sources, such as mobile phones and wireless communications applications. Establishing the levels of exposure could be challenging due to differences in the approaches used in different studies. The goal of this study is to present an overview of the last ten years research efforts about RF EMF exposure in indoor environments, considering different RF-EMF sources found to cause exposure in indoor environments, different indoor environments and different approaches used to assess the exposure. The highest maximum mean levels of the exposure considering the whole RF-EMF frequency band was found in offices (1.14 V/m) and in public transports (0.97 V/m), while the lowest levels of exposure were observed in homes and apartments, with mean values in the range 0.13–0.43 V/m. The contribution of different RF-EMF sources to the total level of exposure was found to show slightly different patterns among the indoor environments, but this finding has to be considered as a time-dependent picture of the continuous evolving exposure to RF-EMF.
This study addressed an important but not yet thoroughly investigated topic regarding human exposure to radio-frequency electromagnetic fields (RF-EMF) generated by vehicular connectivity. In particular, the study assessed, by means of computational dosimetry, the RF-EMF exposure in road users near a car equipped with vehicle-to-vehicle (V2V) communication antennas. The exposure scenario consisted of a 3D numerical model of a car with two V2V antennas, each fed with 1 W, operating at 5.9 GHz and an adult human model to simulate the road user near the car. The RF-EMF dose absorbed by the human model was calculated as the specific absorption rate (SAR), that is, the RF-EMF power absorbed per unit of mass. The highest SAR was observed in the skin of the head (34.7 mW/kg) and in the eyes (15 mW/kg); the SAR at the torso (including the genitals) and limbs was negligible or much lower than in the head and eyes. The SAR over the whole body was 0.19 mW/kg. The SAR was always well below the limits of human exposure in the 100 kHz–6 GHz band established by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The proposed approach can be generalized to assess RF-EMF exposure in different conditions by varying the montage/number of V2V antennas and considering human models of different ages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.