The window of lactation is a critical period during which nutritional and environmental exposures impact lifelong metabolic disease risk. Significant organ and tissue development, organ expansion and maturation of cellular functions occur during the lactation period, making this a vulnerable time during which transient insults can have lasting effects. This review will cover current literature on factors influencing lactational programming such as milk composition, maternal health status and environmental endocrine disruptors. The underlying mechanisms that have the potential to contribute to lactational programming of glucose homeostasis will also be addressed, as well as potential interventions to reduce offspring metabolic disease risk.
Overweight and obesity (OW/OB) impact half of the pregnancies in the United States and can have negative consequences for offspring health. Studies are limited on human milk alterations in the context of maternal obesity. Alterations in milk are hypothesized to impact offspring development during the critical period of lactation. We aimed to evaluate the relationships between mothers with OW/OB (body mass index [BMI] ≥25 kg/m2), infant growth, and selected milk nutrients. We recruited mother–infant dyads with pre‐pregnancy OW/OB and normal weight status. The primary study included 52 dyads with infant growth measures through 6 months. Thirty‐two dyads provided milk at 2 weeks, which was analysed for macronutrients, long‐chain fatty acids, and insulin. We used multivariable linear regression to examine the association of maternal weight status with infant growth, maternal weight status with milk components, and milk components with infant growth. Mothers with OW/OB had infants with higher weight‐for‐length (WFL) and BMI Z‐scores at birth. Mothers with OW/OB had higher milk insulin and dihomo‐gamma‐linolenic, adrenic, and palmitic acids and reduced conjugated linoleic and oleic acids. N6 long‐chain polyunsaturated fatty acid (LC‐PUFA)‐driven factor 1 was associated with higher WFL, lower length‐for‐age (LFA), and lower head circumference‐for‐age Z‐scores change from 2 weeks to 2 months in human milk‐fed infants, whereas N6 LC‐PUFA‐driven factor 5 was associated with lower LFA Z‐score change. Human milk composition is associated with maternal pre‐pregnancy weight status and composition may be a contributing factor to early infant growth trajectory.
In breastfed infants, human milk provides the primary source of iodine to meet demands during this vulnerable period of growth and development. Iodine is a key micronutrient that plays an essential role in hormone synthesis. Despite the importance of iodine, there is limited understanding of the maternal factors that influence milk iodine content and how milk iodine intake during infancy is related to postnatal growth. We examined breast milk samples from near 2 weeks and 2 months post-partum in a mother-infant dyad cohort of mothers with pre-pregnancy weight status defined by body mass index (BMI). Normal (NW, BMI < 25.0 kg/m2) is compared to overweight/obesity (OW/OB, BMI ≥ 25.0 kg/m2). The milk iodine concentration was determined by inductively coupled plasma mass spectrometry. We evaluated the associations between iodine content at 2 weeks and infant anthropometrics over the first year of life using multivariable linear mixed modeling. Iodine concentrations generally decreased from 2 weeks to 2 months. We observed no significant difference in iodine based on maternal weight. A higher iodine concentration at 2 weeks was associated with a larger increase in infant weight-for-age and weight-for-length Z-score change per month from 2 weeks to 1 year. This pilot study shows that early iodine intake may influence infant growth trajectory independent of maternal pre-pregnancy weight status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.