Absence seizures are a common seizure type in children with genetic generalized epilepsy and are characterized by a temporary loss of awareness, arrest of physical activity, and accompanying spike-and-wave discharges on an electroencephalogram. They arise from abnormal, hypersynchronous neuronal firing in brain thalamocortical circuits. Currently available therapeutic agents are only partially effective and act on multiple molecular targets, including γ-aminobutyric acid (GABA) transaminase, sodium channels, and calcium (Ca(2+)) channels. We sought to develop high-affinity T-type specific Ca(2+) channel antagonists and to assess their efficacy against absence seizures in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model. Using a rational drug design strategy that used knowledge from a previous N-type Ca(2+) channel pharmacophore and a high-throughput fluorometric Ca(2+) influx assay, we identified the T-type Ca(2+) channel blockers Z941 and Z944 as candidate agents and showed in thalamic slices that they attenuated burst firing of thalamic reticular nucleus neurons in GAERS. Upon administration to GAERS animals, Z941 and Z944 potently suppressed absence seizures by 85 to 90% via a mechanism distinct from the effects of ethosuximide and valproate, two first-line clinical drugs for absence seizures. The ability of the T-type Ca(2+) channel antagonists to inhibit absence seizures and to reduce the duration and cycle frequency of spike-and-wave discharges suggests that these agents have a unique mechanism of action on pathological thalamocortical oscillatory activity distinct from current drugs used in clinical practice.
There are no treatments in clinical practice known to mitigate the neurobiological processes that convert a healthy brain into an epileptic one, a phenomenon known as epileptogenesis. Downregulation of protein phosphatase 2A, a protein that causes the hyperphosphorylation of tau, is implicated in neurodegenerative diseases commonly associated with epilepsy, such as Alzheimer's disease and traumatic brain injury. Here we used the protein phosphatase 2A activator sodium selenate to investigate the role of protein phosphatase 2A in three different rat models of epileptogenesis: amygdala kindling, post-kainic acid status epilepticus, and post-traumatic epilepsy. Protein phosphatase 2A activity was decreased, and tau phosphorylation increased, in epileptogenic brain regions in all three models. Continuous sodium selenate treatment mitigated epileptogenesis and prevented the biochemical abnormalities, effects which persisted after drug withdrawal. Our studies indicate that limbic epileptogenesis is associated with downregulation of protein phosphatase 2A and the hyperphosphorylation of tau, and that targeting this mechanism with sodium selenate is a potential anti-epileptogenic therapy.
Many diseases are characterized by inflammatory reactions involving both the innate and adaptive arms of the immune system. Thioglycolate medium (TM) injection into the peritoneal cavity has long been used as a stimulus for eliciting inflammatory macrophages for study and for determining the importance of a particular mediator in inflammation. However, the response to this irritant may not be relevant to many inflammatory diseases. Therefore, we have developed an Ag-specific peritonitis model using methylated BSA (mBSA) as the stimulus. Priming mice intradermally with mBSA in adjuvant and boosting 14 days later, followed by an i.p. challenge with mBSA after an additional 7 days, led to an inflammatory reaction equivalent in magnitude to that induced with TM as judged by the number of exudate cells. The inflammatory macrophages elicited by the mBSA protocol differed, being smaller and less vacuolated than TM-elicited macrophages. Also, macrophages from 4-day mBSA-induced exudates expressed more MHC class II than TM-induced exudates, were able to stimulate allogeneic T lymphocytes, and upon in vitro stimulation with LPS secreted greater levels of IL-6 and IL-1β. Macrophages from 4-day TM-induced exudates, on the other hand, expressed Ly6C and ER-MP58, immature myeloid markers. The inflammatory response elicited using the Ag mBSA may be more relevant for studying the inflammatory responses in many diseases, such as those of autoimmune origin and those involving an acquired immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.