Coagulation in drinking water treatment has relied upon iron (Fe) and aluminium (Al) salts throughout the last century to provide the bulk removal of contaminants from source waters containing natural organic matter (NOM). However, there is now a need for improved treatment of these waters as their quality deteriorates and water quality standards become more difficult to achieve. Alternative coagulant chemicals offer a simple and inexpensive way of doing this. In this work a novel zirconium (Zr) coagulant was compared against traditional Fe and Al coagulants. The Zr coagulant was able to provide between 46 and 150% lower dissolved organic carbon (DOC) residual in comparison to the best traditional coagulant (Fe). In addition floc properties were significantly improved with larger and stronger flocs forming when the Zr coagulant was used with the median floc sizes being 930 μm for Zr; 710 μm for Fe and 450 μm for Al. In pilot scale experiments, a similar improved NOM and particle removal was observed. The results show that when optimised for combined DOC removal and low residual turbidity, the Zr coagulant out-performed the other coagulants tested at both bench and pilot scale.
The physical properties of natural organic matter (NOM) flocs, such as size, growth rate, and strength, were investigated using a laser diffraction particle sizing device. Conditions were set such that varying carbon coagulant ratio and zeta potential could both be investigated. Results demonstrated a link between zeta potential and coagulation and flocculation performance, with the production of strong flocs and low residual concentrations when the zeta potential was minimized. The overall strength of the connection points within the floc were determined by a combination of steric interactions, polymer bridging, van der Waals forces, and electrostatic forces. Hence, both dose ratio and zeta potential are important in understanding floc properties. Floc growth was dominated by dose ratio, whereas the response to elevated shear was strongly related to zeta potential. The steady-state floc size was a combination of both factors. This allowed the continued development of a qualitative model in order to engineer optimal floc properties when coagulating NOM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.