The Boulby Underground Germanium Suite (BUGS) comprises three low-background, high-purity germanium detectors operating in the Boulby Underground Laboratory, located 1.1 km underground in the north-east of England, UK. BUGS utilises three types of detector to facilitate a high-sensitivity, high-throughput radio-assay programme to support the development of rare-event search experiments. A Broad Energy Germanium (BEGe) detector delivers sensitivity to low-energy gamma-rays such as those emitted by 210 Pb and 234 Th. A Small Anode Germanium (SAGe) well-type detector is employed for efficient screening of small samples. Finally, a standard p-type coaxial detector provides fast screening of standard samples. This paper presents the steps used to characterise the performance of these detectors for a variety of sample geometries, including the corrections applied to account for cascade summing effects. For low-density materials, BUGS is able to radio-assay to specific activities down to 3.6 mBq kg −1 for 234 Th and 6.6 mBq kg −1 for 210 Pb both of which have uncovered some significant equilibrium breaks in the 238 U chain. In denser materials, where gamma-ray self-absorption increases, sensitivity is demonstrated to specific activities of 0.9 mBq kg −1 for 226 Ra, 1.1 mBq kg −1 for 228 Ra, 0.3 mBq kg −1 for 224 Ra, and 8.6 mBq kg −1 for 40 K with all upper limits at a 90% confidence level. These meet the requirements of most screening campaigns presently under way for rare-event search experiments, such as the LUX-ZEPLIN (LZ) dark matter experiment. We also highlight the ability of the BEGe detector to probe the X-ray fluorescence region which can be important to identify the presence of radioisotopes associated with neutron production; this is of particular relevance in experiments sensitive to nuclear recoils.
Abstract. The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research -MINAR (MINe Analog Research). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator (AUPE-2), Close-Up Imager (CLUPI), Raman Spectrometer, SPLIT (Small Planetary Linear Impulse Tool), Ultrasonic Drill and handheld XRD. We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimeter to meter scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining. IntroductionPlanetary analog research involves the investigation of terrestrial environments that are comparable to extraterrestrial environments. These analogs tend to be focused, at a high level, on science, science operations, or technology research and testing, or a combination of these topics (e.g. Dickinson and Rosen 2003;Sarrazin et al. 2005; Cabrol et al. 2007;Pollard et al. 2009; Lim et al. 2011;Abercromby et al. 2013). Analog field settings are used to evaluate scientific instruments of particular relevance to future flight missions in a rugged field setting. These field tests have, for example, ranged from deserts to underwater settings (e.g. Cabrol et al. 2007;Jasiobedzki et al. 2012;Abercromby et al. 2013), and have taken a variety of forms, from testing a single technology to examine its performance in a particular environment (e.g. Skelley et al. 2007), to fully integrated rover tests utilizing a variety of different instruments (e.g. Schenker et al. 2001).One environment that has received less attention for analog research, but which holds a great deal o...
The deep subsurface of other planetary bodies is of special interest for robotic and human exploration. The subsurface provides access to planetary interior processes, thus yielding insights into planetary formation and evolution. On Mars, the subsurface might harbour the most habitable conditions. In the context of human exploration, the subsurface can provide refugia for habitation from extreme surface conditions. We describe the fifth Mine Analogue Research (MINAR 5) programme at 1 km depth in the Boulby Mine, UK in collaboration with Spaceward Bound NASA and the Kalam Centre, India, to test instruments and methods for the robotic and human exploration of deep environments on the Moon and Mars. The geological context in Permian evaporites provides an analogue to evaporitic materials on other planetary bodies such as Mars. A wide range of sample acquisition instruments (NASA drills, Small Planetary Impulse Tool (SPLIT) robotic hammer, universal sampling bags), analytical instruments (Raman spectroscopy, Close-Up Imager, Minion DNA sequencing technology, methane stable isotope analysis, biomolecule and metabolic life detection instruments) and environmental monitoring equipment (passive air particle sampler, particle detectors and environmental monitoring equipment) was deployed in an integrated campaign. Investigations included studying the geochemical signatures of chloride and sulphate evaporitic minerals, testing methods for life detection and planetary protection around human-tended operations, and investigations on the radiation environment of the deep subsurface. The MINAR analogue activity occurs in an active mine, showing how the development of space exploration technology can be used to contribute to addressing immediate Earth-based challenges. During the campaign, in collaboration with European Space Agency (ESA), MINAR was used for astronaut familiarization with future exploration tools and techniques. The campaign was used to develop primary and secondary school and primary to secondary transition curriculum materials on-site during the campaign which was focused on a classroom extra vehicular activity simulation.
, J-C. (in press). Do you get us? A multi-experiment, meta-analytic test of the effect of felt understanding in intergroup relations.
The effects of high radiation as a biological extreme have historically been, and continue to be, extensively researched in the fields of radiation biology and astrobiology. However, the absence of radiation as an extreme has received relatively limited attention from the scientific community, with its effects on life remaining unclear. The currently accepted model of the radiation dose-damage relationship for organisms is the linear no-threshold (LNT) model, which predicts a positive linear correlation between dose and damage that intercepts at zero dose corresponding to zero damage. Despite its widespread implementation, the LNT model is continuously being challenged by various new models, with the hormesis model as one of its main competitors. This model also postulates damage at high doses but, in contrast to the LNT model, it predicts beneficial stimulation of growth at low doses. Experiments to date have not yet been able to conclusively validate or dismiss either of these models. The aim of the collaborative Subsurface Experiment of Life in Low Radiation (SELLR) project was to test these competing models on prokaryotes in a well-characterised environment and provide a robust experimental set up to investigate low radiation in terrestrial and non-terrestrial environments. Bacterial growth assays using Bacillus subtilis and Escherichia coli were performed under ultra low ionising radiation in the Boulby International Subsurface Astrobiology Laboratory (BISAL) facilities of the Boulby Underground Laboratory at Boulby mine (Redcar & Cleveland, UK) and were used to investigate effects on viability and signs of preconditioning. No significant effect on bacterial growth was observed from exposure to radiation doses ranging from 0.01 times the levels of background radiation typically found in terrestrial surface environments to 100 times that background. Additionally, no preconditioned susceptibility to stress was observed in the bacterial strains grown in sustained low radiation. These data suggest that the extremes of low radiation do not alter growth parameters of these two organisms and that an improved model should be considered for prokaryotes, consisting of a dose-damage response with a threshold at ultra low radiation. We discuss the implications of these data for low radiation as a novel microbiological "extreme."
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.