The potential superior benefits of adaptive deep brain stimulation (aDBS) approaches compared to classical, constantparameters\ud
DBS were already proven by scientific evidence from different research groups. aDBS provides better symptoms control in Parkinson’s disease patients by adapting the stimulation parameters to the patient’s clinical state estimated through the analysis of subthalamic neuronal oscillations (ie,\ud
local field potentials) in the beta band (13-30 Hz)
tDCS over the DLPFC acutely improved depressive symptoms. Besides the inherent limitations of our naturalistic design, our results suggest that tDCS effects might vary according to prior pharmacological treatment, notably benzodiazepines and some antidepressant classes. This issue should be further explored in controlled studies.
In the past years, local field potential (LFP) signals recorded from the subthalamic nucleus (STN) in patients undergoing deep brain stimulation (DBS) for Parkinson’s disease (PD) disclosed that DBS has a controversial effect on STN beta oscillations recorded 2–7 days after surgery for macroelectrode implantation. Nothing is known about these DBS-induced oscillatory changes 30 days after surgery. We recorded STN LFPs during ongoing DBS in 7 patients with PD, immediately (hyperacute phase) and 30 days (chronic phase) after surgery. STN LFP recordings showed stationary intranuclear STN beta LFP activity in hyperacute and chronic phases, confirming that beta peaks were also present in chronic recordings. Power spectra of nuclei with significant beta activity (54% of the sample) showed that it decreased significantly during DBS (p = 0.021) under both recording conditions. The time course of beta activity showed more evident DBS-induced changes in the chronic than in the hyperacute phase (p = 0.014). DBS-induced changes in STN beta LFPs in patients undergoing DBS in chronic phase provide useful information for developing a new neurosignal-controlled adaptive DBS system.
In the past 10 years renewed interest has centered on non-invasive transcutaneous weak direct currents applied over the scalp to modulate cortical excitability (“brain polarization” or transcranial direct current stimulation, tDCS). Extensive literature shows that tDCS induces marked changes in cortical excitability that outlast stimulation. Aiming at developing a new, non-invasive, approach to spinal cord neuromodulation we assessed the after-effects of thoracic transcutaneous spinal DC stimulation (tsDCS) on somatosensory potentials (SEPs) evoked in healthy subjects by posterior tibial nerve (PTN) stimulation. Our findings showed that thoracic anodal tsDCS depresses the cervico-medullary PTN-SEP component (P30) without eliciting adverse effects. tsDCS also modulates post-activation H-reflex dynamics. Later works further confirmed that transcutaneous electric fields modulate spinal cord function. Subsequent studies in our laboratory showed that tsDCS modulates the flexion reflex in the human lower limb. Besides influencing the laser evoked potentials (LEPs), tsDCS increases pain tolerance in healthy subjects. Hence, though the underlying mechanisms remain speculative, tsDCS modulates activity in lemniscal, spinothalamic, and segmental motor systems. Here we review currently available experimental evidence that non-invasive spinal cord stimulation (SCS) influences spinal function in humans and argue that, by focally modulating spinal excitability, tsDCS could provide a novel therapeutic tool complementary to drugs and invasive SCS in managing various pathologic conditions, including pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.