Strains carrying rna14.1 and rna15.2 mutations are defective in pre-mRNA 3' cleavage, polyadenylation, and transcription termination. Long extended read-through transcripts generated in rna14.1 and rna15.2 strains are greatly stabilized by depletion of Rrp41p, a core component of the exosome complex or the RNA helicase Dob1p/Mtr4p. The absence of the nuclear-specific exosome component, Rrp6p, from the rna14.1 strain gave a very different phenotype. Short polyadenylated pre-mRNAs were strongly stabilized, and these were functional for translation. Production of these mRNAs was suppressed by depletion of Rrp41p, indicating that they are the products of exosome processing followed by uncoupled polyadenylation. The balance between complete degradation of 3'-unprocessed pre-mRNAs and their processing to functional mRNAs is regulated, with degradation favored on glucose media.
Key pointsr Hypoglycaemia is counteracted by release of hormones and an increase in ventilation and CO 2 sensitivity to restore blood glucose levels and prevent a fall in blood pH.r The full counter-regulatory response and an appropriate increase in ventilation is dependent on carotid body stimulation.r We show that the hypoglycaemia-induced increase in ventilation and CO 2 sensitivity is abolished by preventing adrenaline release or blocking its receptors.r Physiological levels of adrenaline mimicked the effect of hypoglycaemia on ventilation and CO 2 sensitivity.r These results suggest that adrenaline, rather than low glucose, is an adequate stimulus for the carotid body-mediated changes in ventilation and CO 2 sensitivity during hypoglycaemia to prevent a serious acidosis in poorly controlled diabetes.Abstract Hypoglycaemia in vivo induces a counter-regulatory response that involves the release of hormones to restore blood glucose levels. Concomitantly, hypoglycaemia evokes a carotid body-mediated hyperpnoea that maintains arterial CO 2 levels and prevents respiratory acidosis in the face of increased metabolism. It is unclear whether the carotid body is directly stimulated by low glucose or by a counter-regulatory hormone such as adrenaline. Minute ventilation was recorded during infusion of insulin-induced hypoglycaemia (8-17 mIU kg −1 min −1 ) in Alfaxan-anaesthetised male Wistar rats. Hypoglycaemia significantly augmented minute ventilation (123 ± 4 to 143 ± 7 ml min −1 ) and CO 2 sensitivity (3.3 ± 0.3 to 4.4 ± 0.4 ml min −1 mmHg −1 ). These effects were abolished by either β-adrenoreceptor blockade with propranolol or adrenalectomy. In this hypermetabolic, hypoglycaemic state, propranolol stimulated a rise in P aCO 2 , suggestive of a ventilation-metabolism mismatch. Infusion of adrenaline (1 μg kg −1 min −1 ) increased minute ventilation (145 ± 4 to 173 ± 5 ml min −1 ) without altering P aCO 2 or pH and enhanced ventilatory CO 2 sensitivity (3.4 ± 0.4 to 5.1 ± 0.8 ml min −1 mmHg −1 ). These effects were attenuated by either resection of the carotid sinus nerve or propranolol. Physiological concentrations of adrenaline increased the CO 2 sensitivity of freshly dissociated carotid body type I cells in vitro. These findings suggest that adrenaline release can account for the ventilatory hyperpnoea observed during hypoglycaemia by an augmented carotid body and whole body ventilatory CO 2 sensitivity.
Marine organisms need to adapt in order to cope with the adverse effects of ocean acidification and warming. Transgenerational exposure to CO2 stress has been shown to enhance resilience to ocean acidification in offspring from a number of species. However, the molecular basis underlying such adaptive responses is currently unknown. Here, we compared the transcriptional profiles of two genetically distinct oyster breeding lines following transgenerational exposure to elevated CO2 in order to explore the molecular basis of acclimation or adaptation to ocean acidification in these organisms. The expression of key target genes associated with antioxidant defence, metabolism and the cytoskeleton was assessed in oysters exposed to elevated CO2 over three consecutive generations. This set of target genes was chosen specifically to test whether altered responsiveness of intracellular stress mechanisms contributes to the differential acclimation of oyster populations to climate stressors. Transgenerational exposure to elevated CO2 resulted in changes to both basal and inducible expression of those key target genes (e.g. ecSOD, catalase and peroxiredoxin 6), particularly in oysters derived from the disease-resistant, fast-growing B2 line. Exposure to CO2 stress over consecutive generations produced opposite and less evident effects on transcription in a second population that was derived from wild-type (nonselected) oysters. The analysis of key target genes revealed that the acute responses of oysters to CO2 stress appear to be affected by population-specific genetic and/or phenotypic traits and by the CO2 conditions to which their parents had been exposed. This supports the contention that the capacity for heritable change in response to ocean acidification varies between oyster breeding lines and is mediated by parental conditioning.
Many microarray and suppression subtractive hybridization (SSH) studies have analyzed the effects of environmental stress on gene transcription in marine species. However, there have been no unifying analyses of these data to identify common stress response pathways. To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters. The stressors tested included chemical contamination, hypoxia and infection, as well as extremes of temperature, pH and turbidity. We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress. A repeating pattern was evident in these transcriptional responses, regardless of the type of stress applied. Many of the genes that responded to environmental stress encoded proteins involved in translation and protein processing (including molecular chaperones), the mitochondrial electron transport chain, anti-oxidant activity and the cytoskeleton. In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.