Being able to replicate real experiments with computational simulations is a unique opportunity to refine and validate models with experimental data and redesign the experiments based on simulations. However, since it is technically demanding to model all components of an experiment, traditional approaches to modeling reduce the experimental setups as much as possible. In this study, our goal is to replicate all the relevant features of an experiment on motor control and motor rehabilitation after stroke. To this aim, we propose an approach that allows continuous integration of new experimental data into a computational modeling framework. First, results show that we could reproduce experimental object displacement with high accuracy via the simulated embodiment in the virtual world by feeding a spinal cord model with experimental registration of the cortical activity. Second, by using computational models of multiple granularities, our preliminary results show the possibility of simulating several features of the brain after stroke, from the local alteration in neuronal activity to long-range connectivity remodeling. Finally, strategies are proposed to merge the two pipelines. We further suggest that additional models could be integrated into the framework thanks to the versatility of the proposed approach, thus allowing many researchers to achieve continuously improved experimental design.
One of the big challenges in robotics is to endow agents with autonomous and adaptive capabilities. With this purpose, we embedded a cerebellum-based control system into a humanoid robot that becomes capable of handling dynamical external and internal complexity. The cerebellum is the area of the brain that coordinates and predicts the body movements throughout the body-environment interactions. Different biologically plausible cerebellar models are available in literature and have been employed for motor learning and control of simplified objects. We built the canonical cerebellar microcircuit by combining machine learning and computational neuroscience techniques. The control system is composed of the adaptive cerebellar module and a classic control method; their combination allows a fast adaptive learning and robust control of the robotic movements when external disturbances appear. The control structure is built offline, but the dynamic parameters are learned during an online-phase training. The aforementioned adaptive control system has been tested in the Neuro-robotics Platform with the virtual humanoid robot iCub. In the experiment, the robot iCub has to balance with the hand a table with a ball running on it. In contrast with previous attempts of solving this task, the proposed neural controller resulted able to quickly adapt when the internal and external conditions change. Our bio-inspired and flexible control architecture can be applied to different robotic configurations without an excessive tuning of the parameters or customization. The cerebellum-based control system is indeed able to deal with changing dynamics and interactions with the environment. Important insights regarding the relationship between the bio-inspired control system functioning and the complexity of the task to be performed are obtained.
Central pattern generator (CPG) models have long been used to investigate both the neural mechanisms that underlie animal locomotion, as well as for robotic research. In this work we propose a spiking central pattern generator (SCPG) neural network and its implementation on neuromorphic hardware as a means to control a simulated lamprey model. To construct our SCPG model, we employ the naturally emerging dynamical systems that arise through the use of recurrent neural populations in the neural engineering framework (NEF). We define the mathematical formulation behind our model, which consists of a system of coupled abstract oscillators modulated by high-level signals, capable of producing a variety of output gaits. We show that with this mathematical formulation of the CPG model, the model can be turned into a spiking neural network (SNN) that can be easily simulated with Nengo, an SNN simulator. The SCPG model is then used to produce the swimming gaits of a simulated lamprey robot model in various scenarios. We show that by modifying the input to the network, which can be provided by sensory information, the robot can be controlled dynamically in direction and pace. The proposed methodology can be generalized to other types of CPGs suitable for both engineering applications and scientific research. We test our system on two neuromorphic platforms, SpiNNaker and Loihi. Finally, we show that this category of spiking algorithms displays a promising potential to exploit the theoretical advantages of neuromorphic hardware in terms of energy efficiency and computational speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.