One of the big challenges in robotics is to endow agents with autonomous and adaptive capabilities. With this purpose, we embedded a cerebellum-based control system into a humanoid robot that becomes capable of handling dynamical external and internal complexity. The cerebellum is the area of the brain that coordinates and predicts the body movements throughout the body-environment interactions. Different biologically plausible cerebellar models are available in literature and have been employed for motor learning and control of simplified objects. We built the canonical cerebellar microcircuit by combining machine learning and computational neuroscience techniques. The control system is composed of the adaptive cerebellar module and a classic control method; their combination allows a fast adaptive learning and robust control of the robotic movements when external disturbances appear. The control structure is built offline, but the dynamic parameters are learned during an online-phase training. The aforementioned adaptive control system has been tested in the Neuro-robotics Platform with the virtual humanoid robot iCub. In the experiment, the robot iCub has to balance with the hand a table with a ball running on it. In contrast with previous attempts of solving this task, the proposed neural controller resulted able to quickly adapt when the internal and external conditions change. Our bio-inspired and flexible control architecture can be applied to different robotic configurations without an excessive tuning of the parameters or customization. The cerebellum-based control system is indeed able to deal with changing dynamics and interactions with the environment. Important insights regarding the relationship between the bio-inspired control system functioning and the complexity of the task to be performed are obtained.
The cerebellum, which is responsible for motor control and learning, has been suggested to act as a Smith predictor for compensation of time-delays by means of internal forward models. However, insights about how forward model predictions are integrated in the Smith predictor have not yet been unveiled. To fill this gap, a novel bio-inspired modular control architecture that merges a recurrent cerebellar-like loop for adaptive control and a Smith predictor controller is proposed. The goal is to provide accurate anticipatory corrections to the generation of the motor commands in spite of sensory delays and to validate the robustness of the proposed control method to input and physical dynamic changes. The outcome of the proposed architecture with other two control schemes that do not include the Smith control strategy or the cerebellar-like corrections are compared. The results obtained on four sets of experiments confirm that the cerebellum-like circuit provides more effective corrections when only the Smith strategy is adopted and that minor tuning in the parameters, fast adaptation and reproducible configuration are enabled.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In traditional robotics, model-based controllers are usually needed in order to bring a robotic plant to the next desired state, but they present critical issues when the dimensionality of the control problem increases and disturbances from the external environment affect the system behavior, in particular during locomotion tasks. It is generally accepted that the motion control of quadruped animals is performed by neural circuits located in the spinal cord that act as a Central Pattern Generator and can generate appropriate locomotion patterns. This is thought to be the result of evolutionary processes that have optimized this network. On top of this, fine motor control is learned during the lifetime of the animal thanks to the plastic connections of the cerebellum that provide descending corrective inputs. This research aims at understanding and identifying the possible advantages of using learning during an evolution-inspired optimization for finding the best locomotion patterns in a robotic locomotion task. Accordingly, we propose a comparative study between two bio-inspired control architectures for quadruped legged robots where learning takes place either during the evolutionary search or only after that. The evolutionary process is carried out in a simulated environment, on a quadruped legged robot. To verify the possibility of overcoming the reality gap, the performance of both systems has been analyzed by changing the robot dynamics and its interaction with the external environment. Results show better performance metrics for the robotic agent whose locomotion method has been discovered by applying the adaptive module during the evolutionary exploration for the locomotion trajectories. Even when the motion dynamics and the interaction with the environment is altered, the locomotion patterns found on the learning robotic system are more stable, both in the joint and in the task space.
Motor control is a very important feature in the human brain to achieve optimal performance in motor tasks. The biological basis of this feature can be better understood by emulating the cerebellar mechanisms of learning. The cerebellum plays a key role in implementing fine motor control, since it extracts the information about movements from sensorymotor signals, stores it by means of internal models and uses them to adapt to the environment. The hypothesis is that different internal models could work both independently and dependently. So far, there have been a few studies that aimed to prove their dependency; however, this hypothesis has not been widely used in robot control. The purpose of this work is to build paired spiking cerebellar models and to incorporate them into a biologically plausible composite robotic control architecture for movement adaptation. This is achieved by combining feedback error learning and cerebellar internal models theories. Thus the control architecture is composed of cerebellar feed-forward and recurrent loops for torque-based control of a robot. The spiking cerebellar models are able to correct and improve the performance of the two-degrees of freedom robot module Fable by providing both adaptive torque corrections and sensory corrections to the reference generated by the trajectory planner. Simulations are carried out in the Neurorobotics platform of the Human Brain Project. Results show that the contribution provided by cerebellar learning leads to an optimization of the performance with errors being reduced by 30% compared with the case where the cerebellar contribution is not applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.