The templating RNA is the core of the telomerase reverse transcriptase. In Saccharomyces cerevisiae, the complex life cycle and maturation of telomerase includes a cytoplasmic stage. However, timing and reason for this cytoplasmic passage are poorly understood. Here, we use inducible RNA tagging experiments to show that immediately after transcription, newly synthesized telomerase RNAs undergo one round of nucleo-cytoplasmic shuttling. Their export depends entirely on Crm1/Xpo1, whereas re-import is mediated by Kap122 plus redundant, kinetically less efficient import pathways. Strikingly, Mex67 is essential to stabilize newly transcribed RNA before Xpo1-mediated nuclear export. The results further show that the Sm7 complex associates with and stabilizes the telomerase RNA in the cytoplasm and promotes its nuclear re-import. Remarkably, after this cytoplasmic passage, the nuclear stability of telomerase RNA no longer depends on Mex67. These results underscore the utility of inducible RNA tagging and challenge current models of telomerase maturation.
The number of essential telomerase components in the active ribonucleoprotein (RNP) has important implications for its mechanism of action yet is by and large unknown. We report that two differentially tagged TLC1 RNAs endogenously expressed in a heterozygous diploid and simultaneously detected via multi-color fluorescence in situ hybridization (FISH) experiments do not co-localize. Probabilistic calculations combined with direct quantification of FISH signals demonstrate that the TLC1 RNA indeed occurs as a single molecule in these RNPs. In addition, two differentially tagged reverse-transcriptase subunits could not be co-immunoprecipitated. These results therefore show that, in yeast cells, telomerase is assembled and matured and occurs as a monomer when not on telomeres. Finally, combining these findings with previous evidence leads us to propose that the enzyme also acts as a monomer when elongating telomeres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.