Detection of minimal residual disease (MRD) has proven to provide independent prognostic information for treatment stratification in several types of leukemias such as childhood acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and acute promyelocytc leukemia. This report focuses on the accurate quantitative measurement of fusion gene (FG) transcripts as can be applied in 35-45% of ALL and acute myeloid leukemia, and in more than 90% of CML. A total of 26 European university laboratories from 10 countries have collaborated to establish a standardized protocol for TaqManbased real-time quantitative PCR (RQ-PCR) analysis of the main leukemia-associated FGs within the Europe Against Cancer (EAC) program. Four phases were scheduled: (1) training, (2) optimization, (3) sensitivity testing and (4) patient sample testing. During our program, three quality control rounds on a large series of coded RNA samples were performed including a balanced randomized assay, which enabled final validation of the EAC primer and probe sets. The expression level of the nine major FG transcripts in a large series of stored diagnostic leukemia samples (n ¼ 278) was evaluated. After normalization, no statistically significant difference in expression level was observed between bone marrow and peripheral blood on paired samples at diagnosis. However, RQ-PCR revealed marked differences in FG expression between transcripts in leukemic Correspondence: Professor J
Real-time quantitative RT-PCR (RQ-PCR) is a sensitive tool to monitor minimal residual disease (MRD) in leukemic patients through the amplification of a fusion gene (FG) transcript. In order to correct variations in RNA quality and quantity and to calculate the sensitivity of each measurement, a control gene (CG) transcript should be amplified in parallel to the FG transcript. To identify suitable CGs, a study group within the Europe Against Cancer (EAC) program initially focused on 14 potential CGs using a standardized RQ-PCR protocol. Based on the absence of pseudogenes and the level and stability of the CG expression, three genes were finally selected: Abelson (ABL), beta-2-microglobulin (B2M), and beta-glucuronidase (GUS). A multicenter prospective study on normal (n ¼ 126) and diagnostic leukemic (n ¼ 184) samples processed the same day has established reference values for the CG expression. A multicenter retrospective study on over 250 acute and chronic leukemia samples obtained at diagnosis and with an identified FG transcript confirmed that the three CGs had a stable expression in the different types of samples. However, only ABL gene transcript expression did not differ significantly between normal and leukemic samples at diagnosis. We therefore propose to use the ABL gene as CG for RQ-PCRbased diagnosis and MRD detection in leukemic patients. Overall, these data are not only eligible for quantification of fusion gene transcripts, but also for the quantification of aberrantly expressed genes.
Purpose: MicroRNAs (miRNA) play pivotal oncogenic and tumor-suppressor roles in several human cancers. We sought to discover novel tumor-suppressor miRNAs in gastric cancer (GC).Experimental Design: Using Agilent miRNA microarrays, we compared miRNA expression profiles of 40 primary gastric tumors and 40 gastric normal tissues, identifying miRNAs significantly downregulated in gastric tumors.Results: Among the top 80 miRNAs differentially expressed between gastric tumors and normals (false discovery rate < 0.01), we identified hsa-miR-486 (miR-486) as a significantly downregulated miRNA in primary GCs and GC cell lines. Restoration of miR-486 expression in GC cell lines (YCC3, SCH and AGS) caused suppression of several pro-oncogenic traits, whereas conversely inhibiting miR-486 expression in YCC6 GC cells enhanced cellular proliferation. Array-CGH analysis of 106 primary GCs revealed genomic loss of the miR-486 locus in approximately 25% to 30% of GCs, including two tumors with focal genomic losses specifically deleting miR-486, consistent with miR-486 playing a tumor-suppressive role. Bioinformatic analysis identified the secreted antiapoptotic glycoprotein OLFM4 as a potential miR-486 target.Restoring miR-486 expression in GC cells decreased endogenous OLFM4 transcript and protein levels, and also inhibited expression of luciferase reporters containing an OLFM4 3 0 untranslated region with predicted miR-486 binding sites. Supporting the biological relevance of OLFM4 as a miR-486 target, proliferation in GC cells was also significantly reduced by OLFM4 silencing.Conclusions: miR-486 may function as a novel tumor-suppressor miRNA in GC. Its antioncogenic activity may involve the direct targeting and inhibition of OLFM4. Clin Cancer Res; 17(9); 2657-67. Ó2011 AACR.
Serial quantitation of BCR-ABL IntroductionReverse-transcription real-time quantitative polymerase chain reaction (RQ-PCR) is used routinely to quantify levels of BCR-ABL mRNA in peripheral blood and bone marrow samples from chronic myelogenous leukemia (CML) patients undergoing therapy. The technique can accurately determine response to treatment and is particularly valuable for patients who have achieved a complete cytogenetic response. The National Comprehensive Cancer Network (NCCN) 1 and the European LeukemiaNet (ELN) 2 recommend similar monitoring schedules for patients treated with imatinib and the ELN defines an optimal response as the attainment of a major molecular response (MMR) after 18 months of therapy. Monitoring of BCR-ABL mRNA levels is also useful for gauging therapeutic response for patients with Philadelphia chromosomepositive acute lymphoblastic leukemia (Ph ϩ ALL). The CML meeting at the National Institutes of Health in Bethesda in October 2005 made several recommendations for the harmonization of minimal residual disease (MRD) assessment and proposed an international scale (IS) for BCR-ABL RQ-PCR measurements. 8 Importantly, the IS is essentially identical to that used in the International Randomized Study of Interferon and STI571 (IRIS) study, 9 with the IRIS standardized baseline defined as 100% BCR-ABL IS and MMR (3-log reduction relative to the standardized baseline) defined as 0.1% BCR-ABL IS . The original standards used for the IRIS trial are no longer available, however traceability to the IRIS scale is provided by the extensive quality control data generated by the Adelaide laboratory over a period of several years. 10,11 To enable testing centers to gain access to the IS, the Adelaide laboratory initiated a process to develop and validate laboratoryspecific conversion factors (CFs) that can be used to convert local values to IS values. 11 The strength of this approach is that testing centers can continue to use their existing assay conditions and continue to express results according to local preferences in addition to expressing results on the IS. The concept of the IS is analogous to established procedures for other quantitative assays, for example the International Normalized Ratio (INR) for prothrombin time. 12 Many laboratories with validated CFs have established themselves as national or regional reference laboratories and are in the process of propagating CFs to local centers. 13 While this process has generally worked well, it is apparent that the establishment of CFs is time-consuming, complex, expensive, and open to only a limited number of laboratories at any given time. Furthermore, it is unclear how frequently any individual CF will need to be revalidated. We sought therefore to develop an alternative means for testing laboratories to access the IS by developing calibrated, accredited primary reference reagents for BCR-ABL RQ-PCR analysis. StrategyIdeally, the formulation for primary reference reagents should be as close as possible to the usual analyte, should cove...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.