Purpose: MicroRNAs (miRNA) play pivotal oncogenic and tumor-suppressor roles in several human cancers. We sought to discover novel tumor-suppressor miRNAs in gastric cancer (GC).Experimental Design: Using Agilent miRNA microarrays, we compared miRNA expression profiles of 40 primary gastric tumors and 40 gastric normal tissues, identifying miRNAs significantly downregulated in gastric tumors.Results: Among the top 80 miRNAs differentially expressed between gastric tumors and normals (false discovery rate < 0.01), we identified hsa-miR-486 (miR-486) as a significantly downregulated miRNA in primary GCs and GC cell lines. Restoration of miR-486 expression in GC cell lines (YCC3, SCH and AGS) caused suppression of several pro-oncogenic traits, whereas conversely inhibiting miR-486 expression in YCC6 GC cells enhanced cellular proliferation. Array-CGH analysis of 106 primary GCs revealed genomic loss of the miR-486 locus in approximately 25% to 30% of GCs, including two tumors with focal genomic losses specifically deleting miR-486, consistent with miR-486 playing a tumor-suppressive role. Bioinformatic analysis identified the secreted antiapoptotic glycoprotein OLFM4 as a potential miR-486 target.Restoring miR-486 expression in GC cells decreased endogenous OLFM4 transcript and protein levels, and also inhibited expression of luciferase reporters containing an OLFM4 3 0 untranslated region with predicted miR-486 binding sites. Supporting the biological relevance of OLFM4 as a miR-486 target, proliferation in GC cells was also significantly reduced by OLFM4 silencing.Conclusions: miR-486 may function as a novel tumor-suppressor miRNA in GC. Its antioncogenic activity may involve the direct targeting and inhibition of OLFM4. Clin Cancer Res; 17(9); 2657-67. Ó2011 AACR.
Fusion genes are chimeric genes formed in cancers through genomic aberrations such as translocations, amplifications, and rearrangements. To identify fusion genes in gastric cancer, we analyzed regions of chromosomal imbalance in a cohort of 106 primary gastric cancers and 27 cell lines derived from gastric cancers. Multiple samples exhibited genomic breakpoints in the 5' region of SLC1A2/EAAT2, a gene encoding a glutamate transporter. Analysis of a breakpoint-positive SNU16 cell line revealed expression of a CD44-SLC1A2 fusion transcript caused by a paracentric chromosomal inversion, which was predicted to produce a truncated but functional SLC1A2 protein. In primary tumors, CD44-SLC1A2 gene fusions were detected in 1 to 2% of gastric cancers, but not in adjacent matched normal gastric tissues. When we specifically silenced CD44-SLC1A2, cellular proliferation, invasion, and anchorage-independent growth were significantly reduced. Conversely, CD44-SLC1A2 overexpression in gastric cells stimulated these pro-oncogenic traits. CD44-SLC1A2 silencing caused significant reductions in intracellular glutamate concentrations and sensitized SNU16 cells to cisplatin, a commonly used chemotherapeutic agent in gastric cancer. We conclude that fusion of the SLC1A2 gene coding region to CD44 regulatory elements likely causes SLC1A2 transcriptional dysregulation, because tumors expressing high SLC1A2 levels also tended to be CD44-SLC1A2-positive. CD44-SLC1A2 may represent a class of gene fusions in cancers that establish a pro-oncogenic metabolic milieu favoring tumor growth and survival.
The invasiveness of tumour cells depends on changes in cell shape, polarity and migration. Mutant p53 induces enhanced tumour metastasis in mice, and human cells overexpressing p53R273H have aberrant polarity and increased invasiveness, demonstrating the 'gain of function' of mutant p53 in carcinogenesis. We hypothesize that p53R273H interacts with mutant p53-specific binding partners that control polarity, migration or invasion. Here we analyze the p53R273H interactome using stable isotope labelling by amino acids in cell culture and quantitative mass spectrometry, and identify at least 15 new potential mutant p53-specific binding partners. The interaction of p53R273H with one of them-nardilysin (NRD1)-promotes an invasive response to heparin binding-epidermal growth factorlike growth factor that is p53R273H-dependant but does not require Rab coupling protein or p63. Advanced proteomics has thus allowed the detection of a new mechanism of p53-driven invasion.
Cell proliferation requires precise control to prevent mutations from replication of (unrepaired) damaged DNA in cells exposed spontaneously to mutagens. Here we show that the modified human DNA repair enzyme O 6 -methylguanine-DNA methyltransferase (R-MGMT), formed from the suicidal repair of the mutagenic O 6 -alkylguanine (6RG) lesions by MGMT in the cells exposed to alkylating carcinogens, functions in such control by preventing the estrogen receptor (ER) from transcription activation that mediates cell proliferation. This function is in contrast to the phosphotriester repair domain of bacterial ADA protein, which acts merely as a transcription activator for its own synthesis upon repair of phosphotriester lesions. First, MGMT, which is constitutively present at active transcription sites, coprecipitates with the transcription integrator CREBbinding protein CBP/p300 but not R-MGMT. Second, R-MGMT, which adopts an altered conformation, utilizes its exposed VLWKLLKVV peptide domain (codons 98 to 106) to bind ER. This binding blocks ER from association with the LXXLL motif of its coactivator, steroid receptor coactivator-1, and thus represses ER effectively from carrying out transcription that regulates cell growth. Thus, through a change in conformation upon repair of the 6RG lesion, MGMT switches from a DNA repair factor to a transcription regulator (R-MGMT), enabling the cell to sense as well as respond to mutagens. These results have implications in chemotherapy and provide insights into the mechanisms for linking transcription suppression with transcription-coupled DNA repair.Exposure to environmental mutagens, such as UV irradiation and N-nitroso compounds, accounts for 80% of the human cancer incidence (30). The effectiveness of our cells' attempts to repair the DNA lesions inflicted by mutagens on our DNA before DNA replication is fundamentally linked to manifestation of the disease through this etiological pathway. The p53 protein is critical here for maintaining genomic integrity, since its induction upon DNA damage enables the cell to acquire sufficient time to repair the damaged DNA by halting cell cycle progression through its effector, the cell cycle-dependent kinase inhibitor p21 WAFI (11,15). However, p53 appears to be only a downstream effector of this DNA damage response pathway in the cell, since cellular factors, such as the hChk1 and hChk2 (human homologs of the yeast RAD53 and CDS1 proteins), are shown to stabilize p53 through phosphorylation upon exposure to mutagens (6,14,35). While much is known about cell regulation where external stimuli are transduced via the membrane receptors and kinase cascades to activate the nuclear DNA (8), knowledge of reciprocal pathways through which DNA, when it is damaged, signals cellular response through immediate factors remains circumstantial.The high-fidelity property of DNA and RNA polymerases enables them to serve as important signaling factors for the integrity of the DNA as they are arrested at the bulky DNA lesions inflicted by mutagens (33) whil...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.