In this paper, we propose a first efficient on-the-fly algorithm for solving games based on timed game automata with respect to reachability and safety properties 1. The algorithm we propose is a symbolic extension of the on-the-fly algorithm suggested by Liu & Smolka [15] for linear-time model-checking of finite-state systems. Being on-the-fly, the symbolic algorithm may terminate long before having explored the entire state-space. Also the individual steps of the algorithm are carried out efficiently by the use of so-called zones as the underlying data structure. Various optimizations of the basic symbolic algorithm are proposed as well as methods for obtaining time-optimal winning strategies (for reachability games). Extensive evaluation of an experimental implementation of the algorithm yields very encouraging performance results. 1 Though timed games for long have been known to be decidable there has until now been a lack of efficient and truly on-the-fly algorithms for their analysis.
Abstract. In 2005 we proposed the first efficient on-the-fly algorithm for solving games based on timed game automata with respect to reachability and safety properties. The first prototype presented at that time has now matured to a fully integrated tool with dramatic improvements both in terms of performance and the availability of the extended input language of Uppaal-4.0. The new tool can output strategies or let the user play against them both from the command line and from the graphical simulator that was completely re-designed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.