Recent studies have uncovered profound and unexpected roles for a family of tiny regulatory RNAs, known as microRNAs (miRNAs), in the control of diverse aspects of hepatic function and dysfunction, including hepatocyte growth, stress response, metabolism, viral infection and proliferation, gene expression, and maintenance of hepatic phenotype. In liver cancer, misexpression of specific miRNAs suggests diagnostic and prognostic significance. Here, we review the biology of the most abundant miRNA in human liver, miR-122, and consider the diversity of its roles in the liver. We provide a compilation of all miRNAs expressed in the liver, and consider some possible therapeutic opportunities for exploiting miRNAs in the different settings of liver diseases.
Rituximab therapy is an interesting approach for children with early EBV-associated PTLD after liver transplantation. It does not prevent cerebral localization, and rapid resumption of immunosuppression may be advisable to prevent lethal chronic liver graft rejection.
Careful follow-up is necessary to detect late recurrence in infants with multinodular liver hemangiomas. Vascular liver tumors occurring after infancy are likely to be malignant. The high risk of relapse in the remaining liver suggests that if no metastases are detected, liver transplantation is preferable to surgical tumor resection in both situations.
Posttransplant lymphoproliferative disorders (PTLD) represent a spectrum of lymphoid diseases complicating the clinical course of transplant recipients. Most PTLD are Epstein-Barr virus (EBV) associated with viral latency type III. Several in vitro studies have revealed an interaction between EBV latency proteins and molecules of the apoptosis pathway. Data on human PTLD regarding an association between Bcl-2 family proteins and EBV are scarce. We analyzed 60 primary PTLD for expression of 8 anti- (Bcl-2, Bcl-XL, and Mcl-1) and proapoptotic proteins (Bak and Bax), the so-called BH3-only proteins (Bad, Bid, Bim, and Puma), as well as the apoptosis effector cleaved PARP by immunohistochemistry. Bim and cleaved PARP were both significantly (p = 0.001 and p = 5.251e-6) downregulated in EBV-positive compared to EBV-negative PTLD [Bim: 6/40 (15%), cleaved PARP: 10/43 (23%), vs. Bim: 13/16 (81%), cleaved PARP: 12/17 (71%)]. Additionally, we observed a tendency toward increased Bcl-2 protein expression (p = 0.24) in EBV-positive PTLD. Hence, we provide evidence of a distinct regulation of Bcl-2 family proteins in EBV-positive versus negative PTLD. The low-expression pattern of the proapoptotic proteins Bim and cleaved PARP together with the high-expression pattern of the antiapoptotic protein Bcl-2 by trend in EBV-positive tumor cells suggests disruption of the apoptotic pathway by EBV in PTLD, promoting survival signals in the host cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.