A wide range of inconsistencies can arise during requirements engineering as goals and requirements are elicited from multiple stakeholders. Resolving such inconsistencies sooner or later in the process is a necessary condition for successful development of the software implementing those requirements. The paper first reviews the main types of inconsistency that can arise during requirements elaboration, defining them in an integrated framework and exploring their interrelationships. It then concentrates on the specific case of conflicting formulations of goals and requirements among different stakeholder viewpoints or within a single viewpoint. A frequent, weaker form of conflict called divergence is introduced and studied in depth. Formal techniques and heuristics are proposed for detecting conflicts and divergences from specifications of goals/ requirements and of domain properties. Various techniques are then discussed for resolving conflicts and divergences systematically by introduction of new goals or by transformation of specifications of goals/objects toward conflict-free versions. Numerous examples are given throughout the paper to illustrate the practical relevance of the concepts and techniques presented. The latter are discussed in the framework of the KAOS methodology for goal-driven requirements engineering.
ÐRequirements engineering is concerned with the elicitation of high-level goals to be achieved by the envisioned system, the refinement of such goals and their operationalization into specifications of services and constraints and the assignment of responsibilities for the resulting requirements to agents such as humans, devices, and software. Requirements engineering processes often result in goals, requirements, and assumptions about agent behavior that are too ideal; some of them are likely not to be satisfied from time to time in the running system due to unexpected agent behavior. The lack of anticipation of exceptional behaviors results in unrealistic, unachievable, and/or incomplete requirements. As a consequence, the software developed from those requirements will not be robust enough and will inevitably result in poor performance or failures, sometimes with critical consequences on the environment. This paper presents formal techniques for reasoning about obstacles to the satisfaction of goals, requirements, and assumptions elaborated in the requirements engineering process. A first set of techniques allows obstacles to be generated systematically from goal formulations and domain properties. A second set of techniques allows resolutions to be generated once the obstacles have been identified thereby. Our techniques are based on a temporal logic formalization of goals and domain properties; they are integrated into an existing method for goal-oriented requirements elaboration with the aim of deriving more realistic, complete, and robust requirements specifications. A key principle in this paper is to handle exceptions at requirements engineering time and at the goal level, so that more freedom is left for resolving them in a satisfactory way. The various techniques proposed are illustrated and assessed in the context of a real safety-critical system. Index TermsÐGoal-oriented requirements engineering, high-level exception handling, obstacle-based requirements transformation, defensive requirements specification, specification refinement, lightweight formal methods.
Exploring alternative options is at the heart of the requirements and design processes. Different alternatives contribute to different degrees of achievement of non-functional goals about system safety, security, performance, usability, and so forth. Such goals in general cannot be satisfied in an absolute, clear-cut sense. Various qualitative and quantitative frameworks have been proposed to support the assessment of alternatives for design decision making. In general they lead to limited conclusions due to the lack of accuracy and measurability of goal formulations and the lack of impact propagation rules along goal contribution links. The paper presents techniques for specifying partial degrees of goal satisfaction and for quantifying the impact of alternative system designs on the degree of goal satisfaction. The approach consists in enriching goal refinement models with a probabilistic layer for reasoning about partial satisfaction. Within such models, non-functional goals are specified in a precise, probabilistic way; their specification is interpreted in terms of application-specific measures; impact of alternative goal refinements is evaluated in terms of refinement equations over random variables involved in the system's functional goals. A systematic method is presented for guiding the elaboration of such models. The latter can then be used to assess the impact of alternative decisions on the degree of goal satisfaction or to derive quantitative, fine-grained requirements on the software to achieve the higher-level goals.
Abstract-Requirements are sensitive to the context in which the system-to-be must operate. Where such context is well-understood and is static or evolves slowly, existing RE techniques can be made to work well. Increasingly, however, development projects are being challenged to build systems to operate in contexts that are volatile over short periods in ways that are imperfectly understood. Such systems need to be able to adapt to new environmental contexts dynamically, but the contextual uncertainty that demands this self-adaptive ability makes it hard to formulate, validate and manage their requirements. Different contexts may demand different requirements trade-offs. Unanticipated contexts may even lead to entirely new requirements. To help counter this uncertainty, we argue that requirements for selfadaptive systems should be run-time entities that can be reasoned over in order to understand the extent to which they are being satisfied and to support adaptation decisions that can take advantage of the systems' self-adaptive machinery. We take our inspiration from the fact that explicit, abstract representations of software architectures used to be considered design-time-only entities but computational reflection showed that architectural concerns could be represented at run-time too, helping systems to dynamically reconfigure themselves according to changing context. We propose to use analogous mechanisms to achieve requirements reflection. In this paper we discuss the ideas that support requirements reflection as a means to articulate some of the outstanding research challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.