Satellite and airborne optical sensors are increasingly used by scientists, and OPEN ACCESS
A detailed sensitivity analysis investigating the effect of woody elements introduced into the Discrete Anisotropic Radiative Transfer (DART) model on the nadir bidirectional reflectance factor (BRF) for a simulated Norway spruce canopy was performed at a very high spatial resolution (modelling resolution 0.2 m, output pixel size 0.4 m). We used such a high resolution to be able to parameterize DART in an appropriate way and subsequently to gain detailed understanding of the influence of woody elements contributing to the radiative transfer within heterogeneous canopies. Three scenarios were studied by modelling the Norway spruce canopy as being composed of i) leaves, ii) leaves, trunks and first order branches, and finally iii) leaves, trunks, first order branches and small woody twigs simulated using mixed cells (i.e. cells approximated as composition of leaves and/or twigs turbid medium, and large woody constituents). The simulation of each scenario was performed for 10 different canopy closures (CC=50–95%, in steps of 5%), 25 leaf area index (LAI=3.0–15.0 m2 m−2, in steps of 0.5 m2 m−2), and in four spectral bands (centred at 559, 671, 727, and 783 nm, with a FWHM of 10 nm). The influence of woody elements was evaluated separately for both, sunlit and shaded parts of the simulated forest canopy, respectively. The DART results were verified by quantifying the simulated nadir BRF of each scenario with measured Airborne Imaging Spectroradiometer (AISA) Eagle data (pixel size of 0.4 m). These imaging spectrometer data were acquired over the same Norway spruce stand that was used to parameterise the DART model. The Norway spruce canopy modelled using the DART model consisted of foliage as well as foliage including robust woody constituents (i.e. trunks and branches). All results showed similar nadir BRF for the simulated wavelengths. The incorporation of small woody parts in DART caused the canopy reflectance to decrease about 4% in the near-infrared (NIR), 2% in the red edge (RE) and less than 1% in the green band. The canopy BRF of the red band increased by about 2%. Subsequently, the sensitivity on accounting for woody elements for two spectral vegetation indices, the normalized difference vegetation index (NDVI) and the angular vegetation index (AVI), was evaluated. Finally, we conclude on the importance of including woody elements in radiative transfer based approaches and discuss the applicability of the vegetation indices as well as the physically based inversion approaches to retrieve the forest canopy LAI at very high spatial resolution
Assessing the effects of the clumping phenomenon on BRDF of a maize crop based on 3D numerical scenes using DART model.
Ambiguity between forest types on remote-sensing imagery is a major cause of errors found in accuracy assessments of forest inventorymaps. This paper presents a methodology, based on forest plot inventory, ground measurements and simulated imagery, for systematically quantifying these ambiguities in the sense of the minimum distance (MD), maximum likelihood (ML), and frequency-based (FB) classifiers. The method is tested with multi-spectral IKONOS images acquired on areas containing six major communities (oak, pine, fir, primary and secondary high tropical forests, and avocado plantation) of the National Forest Inventory (NFI) map in Mexico. A structural record of the canopy and optical measurements (leaf area index and soil reflectance) were performed on one plot of each class. Intra-class signal variation was modelled using the Discrete Anisotropic Radiative Transfer (DART) simulator of remote-sensing images. Atmospheric conditions were inferred from ground measurements on reference surfaces and leaf optical properties of each forest type were derived from the IKONOS forest signal. Next, all forest types were simulated, using a common environmental configuration, in order to quantify similarity among all forest types, according to MD, ML and FB classifiers. Classes were considered ambiguous when their dissimilarity was smaller than intra-class signal variation. DART proved useful in approximating the pixel value distribution and the ambiguity pattern measured on real forest imagery. In the case study, the oak forest and the secondary tropical forest were both distinguishable from all other classes using an MD classifier in a 25 m window size, whereas pine and primary tropical forests were ambiguous with three other classes using MD. By contrast, only two pairs of classes were found ambiguous for the ML classifier and only one for the FB classifier in that same window size. The avocado plantation was confounded with the primary tropical forest for all classifiers, presumably because the reflectance of both types of forest is governed by a deep canopy and a similar shadow area. We confronted the results of this study with the confusion matrix from the accuracy assessment of the NFI map. An asset of this model-basedmethod is its applicability to a variety of sensor types, eco-zones and class definitions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.