We have synthesized and characterized a library of near-infrared (NIR) heptamethine cyanine dyes for biomedical application as photoacoustic imaging and photothermal agents. These hydrophobic dyes were incorporated into a polymer-based nanoparticle system to provide aqueous solubility and protection of the photophysical properties of each dye scaffold. Among those heptamethine cyanine dyes analyzed, 13 compounds within the nontoxic polymeric nanoparticles have been selected to exemplify structural relationships in terms of photostability, photoacoustic imaging, and photothermal behavior within the NIR (∼650−850 nm) spectral region. The most contributing structural features observed in our dye design include hydrophobicity, rotatable bonds, heavy atom effects, and stability of the central cyclohexene ring within the dye core. The NIR agents developed within this project serve to elicit a structure−function relationship with emphasis on their photoacoustic and photothermal characteristics aiming at producing customizable NIR photoacoustic and photothermal tools for clinical use.
Optoacoustic imaging is a new biomedical imaging technology with clear benefits over traditional optical imaging and ultrasound. While the imaging technology has improved since its initial development, the creation of dedicated contrast agents for optoacoustic imaging has been stagnant. Current exploration of contrast agents has been limited to standard commercial dyes that have already been established in optical imaging applications. While some of these compounds have demonstrated utility in optoacoustic imaging, they are far from optimal and there is a need for contrast agents with tailored optoacoustic properties. The synthesis, encapsulation within tumor targeting silica nanoparticles and applications in in vivo tumor imaging of optoacoustic contrast agents are reported.
Fluorescence‐guided surgery (FGS) aids surgeons with real‐time visualization of small cancer foci and borders, which improves surgical and prognostic efficacy of cancer. Despite the steady advances in imaging devices, there is a scarcity of fluorophores available to achieve optimal FGS. Here, 1) a pH‐sensitive near‐infrared fluorophore that exhibits rapid signal changes in acidic tumor microenvironments (TME) caused by the attenuation of intramolecular quenching, 2) the inherent targeting for cancer based on chemical structure (structure inherent targeting, SIT), and 3) mitochondrial and lysosomal retention are reported. After topical application of
PH08
on peritoneal tumor regions in ovarian cancer‐bearing mice, a rapid fluorescence increase (< 10 min), and extended preservation of signals (> 4 h post‐topical application) are observed, which together allow for the visualization of submillimeter tumors with a high tumor‐to‐background ratio (TBR > 5.0). In addition,
PH08
is preferentially transported to cancer cells via organic anion transporter peptides (OATPs) and colocalizes in the mitochondria and lysosomes due to the positive charges, enabling a long retention time during FGS.
PH08
not only has a significant impact on surgical and diagnostic applications but also provides an effective and scalable strategy to design therapeutic agents for a wide array of cancers.
A heptamethine fluorophore, ERB-60, has been synthesized efficiently in four steps in a good yield. The structure of this fluorophore consists of an electron-donating group (methoxy), a hydrophobic moiety (phenylpropyl) with a rotatable bond, a quaternary ammonium fragment, and indolium rings at the terminal ends connected via polymethine chain. All these inherent chemical features fine-tuned the optical properties of the fluorophore. This compound was characterized by both 1H NMR, 13C NMR and mass spectra. The optical properties, including molar absorptivity, fluorescence, Stokes’s shift, and quantum yield, were measured in different solvents such as DMSO, DMF, MeCN, i-PrOH, MeOH, and H2O. The wavelengths of maximum absorbance of ERB-60 were found to be in the range of 745–770 nm based on the solvents used. In decreasing order, the maximum wavelength of absorbance of ERB-60 in the tested solvents was DMSO > DMF > i-PrOH > MeOH > MeCN > H2O while the decreasing order of the extinction coefficient was found to be MeCN > MeOH > DMSO > i-PrOH > H2O > DMF. ERB-60 was found to be more photostable than IR-786 iodide, a commercially available dye, and brighter than the FDA-approved dye, indocyanine green (ICG).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.