Load flow is an important tool used by power engineers for planning, to determine the best operation for a power system and exchange of power between utility companies. In order to have an efficient operating power system, it is necessary to determine which method is suitable and efficient for the system's load flow analysis. A power flow analysis method may take a long time and therefore prevent achieving an accurate result to a power flow solution because of continuous changes in power demand and generations. This paper presents analysis of the load flow problem in power system planning studies. The numerical methods: Gauss-Seidel, Newton-Raphson and Fast Decoupled methods were compared for a power flow analysis solution. Simulation is carried out using Matlab for test cases of IEEE 9-Bus, IEEE 30-Bus and IEEE 57-Bus system. The simulation results were compared for number of iteration, computational time, tolerance value and convergence. The compared results show that Newton-Raphson is the most reliable method because it has the least number of iteration and converges faster.
This paper presents the design and implementation of a low-pass, high-pass and a hand-pass Finite Impulse Response (FIR) Filter using SPARTAN-6 Field Programmable Gate Array (FPGA) device. The filter performance is tested using Filter Design and Analysis (FDA) and FIR tools from Mathworks. The FDA Tool is used to define the filter order and coefficients, and the FIR tool is used for Simulink simulation. The FPGA implementation is carried out using Spartan-6 LX75T-3FGG676C for different filter specifications and simulated with the help of Xilinx ISE (Integrated Software Environment). System Generator ISE design suit 14.6i is used in synthesizing and co-simulation for FPGA filter output verification. Finally, comparison is done between the results obtained from the software simulations and those from FPGA using hardware co-simulation. The simulation waveforms and synthesis reports verify the parallel implementation of FPGA which proves its effectiveness in terms of speed, resource usage and power consumption.
The availability of non-renewable energy sources such as crude oil, natural gas, coal etc., is fast diminishing. So the renewable energy sources such as solar, hydropower, geothermal, wind, tidal energy, are gaining more and more importance. Many new developments to convert these renewable energy sources into usable forms are taking place. Most renewable energy sources are used to produce electricity. In this paper, a performance and efficiency simulation study of a smart-grid connected photovoltaic system using Chroma DC programmable power supply, AC programmable source and an Aurora Inverter is proposed. The simulation is performed in MATLAB environment where the Current-Voltage (I-V) and Power-Voltage (P-V) curves from the solar array simulator are generated and plotted. The proposed topology has been verified with satisfactory results. In addition, temperature and irradiance effects on I-V and P-V characteristic curves are verified. Also, the efficiency curves of the photovoltaic grid interface inverter are generated in the study. The MATLAB code developed in this paper is a valuable tool for design engineers comparing different inverters, calculating the optimum efficiency of a given inverter type. KeywordsSmart-Grid, Photovoltaic System, Renewable and of Non-Renewable Energy, Current-Voltage (I-V) and Power-Voltage (P-V) Curves, Inverter, Electricity
There are a number of IT Security journals available in the literature but none of these research papers have practically specified approaches to secure the IT environment at large. In this paper, more emphases will be laid on the practical ways to secure our IT environments and with some useful real-life scenarios. In today, securing our IT environment has become the key factor in the industry due to an increasing number of attackers invading and stealing the intellectual properties; thereby, rendering most IT industries to go out of businesses. They may find that understanding and translating IT security recommendations to implementable practices can be overwhelming. While this is a worthwhile and important task, there are also more practical ways to ensure you are using IT security best practices in your business. Therefore, the need to properly secure our IT environments in order to mitigate those attacks by using the right tools in all IT domains will be fully discussed in this research. This paper will focus more on protection of LAN-WAN Domain as a use case.
In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation's price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant's emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator's emulation were executed individually through synchronizing the grid to determine each generator's specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.