The structural optimization of the components in multibody systems is performed using a fully coupled optimization method. The design's predicted response is obtained from a flexible multibody system simulation under various service conditions. In this way, the resulting optimization process enhances most existing studies which are limited to weakly coupled (quasi-) static or frequency domain loading conditions. A level set description of the component geometry is used to formulate a generalized shape optimization problem which is solved via efficient gradient-based optimization methods. Gradients of cost and constraint functions are obtained from a sensitivity analysis which is revisited in order to facilitate its implementation and retain its computational efficiency. The optimizations of a slidercrank mechanism and a 2-dof robot are provided to exemplify the procedure.
This paper is dedicated to the structural optimization of flexible components in mechanical systems modeled as multibody systems. While most of the structural optimization developments have been conducted under (quasi-)static loadings or vibration design criteria, the proposed approach aims at considering as precisely as possible the effects of dynamic loading under service conditions. Solving this problem is quite challenging and naive implementations may lead to inaccurate and unstable results. To elaborate a robust and reliable approach, the optimization problem formulation is investigated because it turns out that it is a critical point. Different optimization algorithms are also tested. To explain the efficiency of the various solution approaches, the complex nature of the design space is analyzed. Numerical applications considering the optimization of a two-arm robot subject to a trajectory tracking constraint and the optimization of a slider-crank mechanism with a cyclic dynamic loading are presented to illustrate the different concepts.
The paper concerns a detailed comparison between two optimization methods that are used to perform the structural optimization of flexible components within a multibody system (MBS) simulation. The dynamic analysis of flexible MBS is based on a nonlinear finite element formulation. The first method is a weakly coupled method which reformulates the dynamic response optimization problem in a two-level approach. Firstly, a rigid or flexible MBS simulation is performed and secondly, each component is optimized independently using a quasistatic approach in which a series of equivalent static load (ESL) cases obtained from the MBS simulation are applied to the respective components. The second method, the fully coupled method, performs the dynamic response optimization using the time response obtained directly from the flexible MBS simulation. Here, an original procedure is proposed to evaluate the ESL from a nonlinear finite element simulation, contrasting with the floating reference frame formulation exploited in the standard ESL method. Several numerical examples are provided to support our position. It is shown that the fully coupled method is more general and accommodates all types of constraint at the price of a more complex optimization process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.