Changes are currently being made to winemaking processes to reduce chemical inputs [particularly sulfur dioxide (SO2)] and adapt to consumer demand. In this study, yeast growth and fungal diversity were investigated in merlot during the prefermentary stages of a winemaking process without addition of SO2. Different factors were considered, in a two-year study: vintage, maturity level and bioprotection by the adding yeast as an alternative to SO2. The population of the target species was monitored by quantitative-PCR, and yeast and filamentous fungi diversity was determined by 18S rDNA metabarcoding. A gradual decrease of the α-diversity during the maceration process was highlighted. Maturity level played a significant role in yeast and fungal abundance, which was lower at advanced maturity, while vintage had a strong impact on Hanseniaspora spp. population level and abundance. The presence of SO2 altered the abundance of yeast and filamentous fungi, but not their nature. The absence of sulfiting led to an unexpected reduction in diversity compared to the presence of SO2, which might result from the occupation of the niche by certain dominant species, namely Hanseniaspora spp. Inoculation of the grape juice with non-Saccharomyces yeast resulted in a decrease in the abundance of filamentous fungi generally associated with a decline in grape must quality. Lower abundance and niche occupation by bioprotection agents were observed at the overripened stage, thus suggesting that doses applied should be reconsidered at advanced maturity. Our study confirmed the bioprotective role of Metschnikowia pulcherrima and Torulaspora delbrueckii in a context of vinification without sulfites.
UV-C light is well known for its germicidal properties and is widely used for water disinfection. However, its low penetration into absorbing liquids, such as wines and musts, reduces drastically the microbial inactivation effectiveness. Additionally, wines require UV-C doses to be as low as possible to avoid any possible light-struck flavors. In order to add to the technologies that allow the reduction of SO2 use, a coiled UV-C reactor was designed to inactivate microorganisms in wines and musts. Due to its unique hydrodynamic characteristics, this design could improve the exposure probabilities of the microorganisms to the UV-C light in absorbing liquids. In a first step, theoretical and measured fluid dynamics parameters such as Dean number were employed to improve the operating conditions of the reactor. The higher the Dean number, the higher the UV-C dose delivery efficiency in this reactor, and thus the lower the dose required to inactivate a given load of microorganisms. The second step investigated the impact of different wines on microbial inactivation efficiency and the UV-C doses required to inactivate microorganisms frequently found in wines. White and rosé wines, with low absorbances at 254 nm, required lower doses (≈ 600 J/L) than red wine (≈ 5000 J/L) because their absorption coefficient is ten times lower. The tolerance of microbial strains to UV-C treatments was variable, with higher resistance observed for yeast than for bacteria. In the third step, treatments conducted at semi-industrial scale showed that physicochemical and sensorial properties of wines and musts were not altered, highlighting the possible relevance of such a reactor on an industrial scale. Highlights: • Design of a coiled UV-C reactor for microbial stabilization of wines and musts• Focus on inactivation efficiency in multiple strains and wine varieties• Chemical and sensorial analyses to ensure treatment does not affect the organoleptic properties of the product
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.