UV-C light is well known for its germicidal properties and is widely used for water disinfection. However, its low penetration into absorbing liquids, such as wines and musts, reduces drastically the microbial inactivation effectiveness. Additionally, wines require UV-C doses to be as low as possible to avoid any possible light-struck flavors. In order to add to the technologies that allow the reduction of SO2 use, a coiled UV-C reactor was designed to inactivate microorganisms in wines and musts. Due to its unique hydrodynamic characteristics, this design could improve the exposure probabilities of the microorganisms to the UV-C light in absorbing liquids. In a first step, theoretical and measured fluid dynamics parameters such as Dean number were employed to improve the operating conditions of the reactor. The higher the Dean number, the higher the UV-C dose delivery efficiency in this reactor, and thus the lower the dose required to inactivate a given load of microorganisms. The second step investigated the impact of different wines on microbial inactivation efficiency and the UV-C doses required to inactivate microorganisms frequently found in wines. White and rosé wines, with low absorbances at 254 nm, required lower doses (≈ 600 J/L) than red wine (≈ 5000 J/L) because their absorption coefficient is ten times lower. The tolerance of microbial strains to UV-C treatments was variable, with higher resistance observed for yeast than for bacteria. In the third step, treatments conducted at semi-industrial scale showed that physicochemical and sensorial properties of wines and musts were not altered, highlighting the possible relevance of such a reactor on an industrial scale. Highlights: • Design of a coiled UV-C reactor for microbial stabilization of wines and musts• Focus on inactivation efficiency in multiple strains and wine varieties• Chemical and sensorial analyses to ensure treatment does not affect the organoleptic properties of the product
High energy consumption is often required to increase the extraction of phenolic compounds from grapes during alcoholic fermentation. Processes such as thermovinification require significant temperature changes over a long period of time to ensure the diffusion of phenolic compounds from the grape skin layer to the must. In this study, the capability of the ohmic heating (OH) process (E = 55 V/cm, t = 60–90 s, T = 72 °C) to improve the extractability of valuable intracellular compounds from grape skins of Aglianico and Barbera grape matrices before the alcoholic fermentation stepAs similarly reported by Donsì et al. (2010), any tissue damage to grape skins occurring after the application of either conventional or ohmic heating was not found to influence the rate of fermentation. was investigated and compared with both untreated and conventional thermally (CH) treated (T = 72 °C, t = 90 s) samples. Total phenolics and antioxidant capacity were monitored during fermentation (10 days). In comparison to the conventional thermal treatment, the results showed that the phenolic compound content of musts was twice as high immediately after OH treatment. This process could drastically improve the classic prefermentary maceration (thermovinifications, cold macerations, etc.) time. In finished wines produced from the treated musts, the total polyphenolic content of OH wines was up to 17 % higher than that of CH wines, and 30 % higher than that of untreated wines. No differences in concentrations of total tannins and anthocyanins were observed between conventional and ohmic heated musts. However, an increase of 30 to 200 % for some aromatic esters was observed in wines from ohmic heated musts. Overall, the outcomes of this work proved that, in addition to the thermal effect, the moderate electric field (MEF) applied during ohmic heating has the potential to induce an instantaneous release of polyphenolic compounds due to the electroporation phenomenon of cell membranes, thus saving energy and reducing processing time.
The oak barrel maturation step is nowadays strongly rooted in the production of quality wines. Two main physico‑chemical phenomena contribute to the modification and improvement of wine: the solubilisation of volatile and non-volatile wood compounds concomitant with the dissolution of oxygen from the air into the wine. Indeed, wood is a porous material and gas transfer (especially oxygen transfer, expressed as oxygen transfer rate or OTR) through oak barrels, is an intrinsic parameter which ensures wine oxygen supply during maturation. Due to its oenological impact, it has been actively studied over recent decades using several approaches based on the same principle: the monitoring of oxygen in a model wine solution in the barrel. This project aimed at assaying barrel OTR by using a new tool based on the theoretical knowledge of gas transfer through porous materials. An oxygen concentration gradient was created on each side of a barrel kept in an airtight stainless-steel tank. The concentration of the oxygen in the atmosphere around the barrel was monitored in order to quantify oxygen transfer, thus the avoiding common drawbacks of interactions between dissolved oxygen ingress kinetics and the consumption of oxygen in the liquid phase by wood components. This study reports for the first time, the diffusion coefficient of entire oak barrels (Q. sessilis) to be between 10-10 and 10-9 m²/s, and it contributes to increasing knowledge on the complex phenomena driving oxygen ingress during the maturation of wine in barrels kept in cellar conditions. The results highlight the important role of wood moisture content in oxygen transfer, and provides a simple and reliable parameter to monitor it: the weight of the barrel. Following methodology developed by the authors, the OTR of a new oak barrel was found to be 11.4 mg/L per year. Taking into account the oxygen released through the wood pores, a new barrel will contribute 14.4 mg/L per year of oxygen to the wine, of which 46 % in the first three months of aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.