Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1 were isolated from the rhizosphere soil of the selenium-hyperaccumulator legume Astragalus bisulcatus and waste material from a dumping site for roasted pyrites, respectively. Here, these bacterial strains were studied as cell factories to generate selenium-nanostructures (SeNS) under metabolically controlled growth conditions. Thus, a defined medium (DM) containing either glucose or pyruvate as carbon and energy source along with selenite () was tested to evaluate bacterial growth, oxyanion bioconversion and changes occurring in SeNS features with respect to those generated by these strains grown on rich media. Transmission electron microscopy (TEM) images show extra- or intra-cellular emergence of SeNS in SeITE02 or MPV1 respectively, revealing the presence of two distinct biological routes of SeNS biogenesis. Indeed, the stress exerted by upon SeITE02 cells triggered the production of membrane vesicles (MVs), which surrounded Se-nanoparticles (SeNPsSeITE02-G_e and SeNPsSeITE02-P_e with average diameter of 179 ± 56 and 208 ± 60 nm, respectively), as highlighted by TEM and scanning electron microscopy (SEM), strongly suggesting that MVs might play a crucial role in the excreting mechanism of the SeNPs in the extracellular environment. On the other hand, MPV1 strain biosynthesized intracellular inclusions likely containing hydrophobic storage compounds and SeNPs (123 ± 32 nm) under pyruvate conditioning, while the growth on glucose as the only source of carbon and energy led to the production of a mixed population of intracellular SeNPs (118 ± 36 nm) and nanorods (SeNRs; average length of 324 ± 89). SEM, fluorescence spectroscopy, and confocal laser scanning microscopy (CLSM) revealed that the biogenic SeNS were enclosed in an organic material containing proteins and amphiphilic molecules, possibly responsible for the high thermodynamic stability of these nanomaterials. Finally, the biogenic SeNS extracts were photoluminescent upon excitation ranging from 380 to 530 nm, whose degree of fluorescence emission (λem = 416–640 nm) was comparable to that from chemically synthesized SeNPs with L-cysteine (L-cys SeNPs). This study offers novel insights into the formation, localization, and release of biogenic SeNS generated by two different Gram-negative bacterial strains under aerobic and metabolically controlled growth conditions. The work strengthens the possibility of using these bacterial isolates as eco-friendly biocatalysts to produce high quality SeNS targeted to possible biomedical applications and other biotechnological purposes.
Nanomedicine requires intelligent and non-toxic nanomaterials for real clinical applications. Carbon materials possess interesting properties but with some limitations due to toxic effects. Interest in carbon nanoparticles (CNPs) is increasing because they are considered green materials with tunable optical properties, overcoming the problem of toxicity associated with quantum dots or nanocrystals, and can be utilized as smart drug delivery systems. Using black tea as a raw material, we synthesized CNPs with a narrow size distribution, tunable optical properties covering visible to deep red absorption, non-toxicity and easy synthesis for large-scale production. We utilized these CNPs to label subcellular structures such as exosomes. More importantly, these new CNPs can escape lysosomal sequestration and rapidly distribute themselves in the cytoplasm to release doxorubicin (doxo) with better efficacy than the free drug. The release of doxo from CNPs was optimal at low pH, similar to the tumour microenvironment. These CNPs were non-toxic in mice and reduced the tumour burden when loaded with doxo due to an improved pharmacokinetics profile. In summary, we created a new delivery system that is potentially useful for improving cancer treatments and opening a new window for tagging microvesicles utilized in liquid biopsies.
The development of nanomaterials with high sensitivity to external stimuli such as temperature is critical to investigate the driving force of not only biological processes but also catalytic mechanisms in extreme environments. However, the instability of nano-objects at high temperatures and different environments is a serious drawback limiting often their real use. This is particularly severe in the case of bismuth-based compounds, making the development of highly stable bismuth-based nanosystems a challenge. Here, we report the synthesis of uniform crystalline lanthanide-doped Bi 2 SiO 5 nanoparticles into a silica shell of a controlled thickness (Bi 2 SiO 5 :Ln@SiO 2 ) for the design of a reliable ratiometric optical thermometer stable at high temperatures and extreme acid environments. The fine control of the SiO 2 shell thickness is modeled based on a theoretical and experimental approach. The formation of the Bi 2 SiO 5 single phase is triggered by the local reactivity between Bi 2 O 3 and SiO 2 in the Bi 2 O 3 @SiO 2 system, leading to a double-layered Bi 2 SiO 5 @SiO 2 hollow nanosystem. The potential of the Bi 2 SiO 5 :Ln@SiO 2 nanosystem as a ratiometric nanothermometer is demonstrated for the upconverting Yb−Er couple. The performances were evaluated in the wide range of linearity of the Boltzmann law (280−800 K) showing suitable values of relative sensitivity, temperature uncertainty, and repeatability (R > 99%) not only for biological applications but also to probe the temperature in extreme environments. In fact, the strategy results in an acid-inert thermal probe up to pH < 1 overcoming the weakness of bismuthbased materials to acid environments with promising properties for in situ thermometry of catalytic reactions.
Molecular imprinted poly(acrylamido)-derivative nanogels have shown their selectivity to bind the protein human serum transferrin (HTR) and also showed their capability for instantaneous solvent-induced modification upon the addition of acetonitrile. Integrated to matrix-assisted laser desorption/ionization time-of-flight mass analysis the HTR-imprinted solvent-responsive nanogels permitted the determination of HTR straight from serum and offered novel perspectives in targeted protein analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.