Recent studies have focused on how climate change could drive changes in phytoplankton communities in the Arctic. In contrast, ciliates and dinoflagellates that can contribute substantially to the mortality of phytoplankton have received less attention. Some dinoflagellate and ciliate species can also contribute to net photosynthesis, which suggests that species composition could reflect food web complexity. To identify potential seasonal and annual species occurrence patterns and to link species with environmental conditions, we first examined the seasonal pattern of microzooplankton and then performed an in-depth analysis of interannual species variability. We used high-throughput amplicon sequencing to identify ciliates and dinoflagellates to the lowest taxonomic level using a curated Arctic 18S rRNA gene database. DNA-and RNA-derived reads were generated from samples collected from the Canadian Arctic from November 2007 to July 2008. The proportion of ciliate reads increased in the surface toward summer, when salinity was lower and smaller phytoplankton prey were abundant, while chloroplastidic dinoflagellate species increased at the subsurface chlorophyll maxima (SCM), where inorganic nutrient concentrations were higher. Comparing communities collected in summer and fall from 2003 to 2010, we found that microzooplankton community composition change was associated with the record ice minimum in the summer of 2007. Specifically, reads from smaller predatory species like Laboea, Monodinium, and Strombidium and several unclassified ciliates increased in the summer after 2007, while the other usually summer-dominant dinoflagellate taxa decreased. The ability to exploit smaller prey, which are predicted to dominate the future Arctic, could be an advantage for these smaller ciliates in the wake of the changing climate.
Abstract. The ubiquity of heterotrophic flagellates (HFL) in marine waters has been recognized for several decades, but the phylogenetic diversity of these small (ca. 0.8–20 μm cell diameter), mostly phagotrophic protists in the upper pelagic zone of the ocean is underappreciated. Community composition of microbes, including HFL, is the result of past and current environmental selection, and different taxa may be indicative of food webs that cycle carbon and energy very differently. While all oceanic water columns can be density stratified due to the temperature and salinity characteristics of different water masses, the Arctic Ocean is particularly well stratified, with nutrients often limiting in surface waters and most photosynthetic biomass confined to a subsurface chlorophyll maximum layer, where light and nutrients are both available. This physically well-characterized system provided an opportunity to explore the community diversity of HFL from different water masses within the water column. We used high-throughput DNA sequencing techniques as a rapid means of surveying the diversity of HFL communities in the southern Beaufort Sea (Canada), targeting the surface, the subsurface chlorophyll maximum layer (SCM) and just below the SCM. In addition to identifying major clades and their distribution, we explored the micro-diversity within the globally significant but uncultivated clade of marine stramenopiles (MAST-1) to examine the possibility of niche differentiation within the stratified water column. Our results strongly suggested that HFL community composition was determined by water mass rather than geographical location across the Beaufort Sea. Future work should focus on the biogeochemical and ecological repercussions of different HFL communities in the face of climate-driven changes to the physical structure of the Arctic Ocean.
The ubiquity of heterotrophic flagellates (HFL) in marine waters has been recognized for several decades, but the phylogenetic diversity of these small (ca. 0.8–20 μm cell diameter), mostly phagotrophic protists in the pelagic zone of the ocean is underappreciated. Community composition of microbes, including HFL, is the result of past and current environmental selection, and different taxa may be indicative of food webs that cycle carbon and energy very differently. While all oceanic water columns can be density stratified due to the temperature and salinity characteristics of different water masses, the Arctic Ocean is particularly well stratified, with nutrients often limiting in surface waters and most photosynthetic biomass confined to a subsurface chlorophyll maximum (SCM) layer. This physically well-characterized system provided an opportunity to explore the community diversity of HFL across a wide region, and down the water column. We used high-throughput DNA sequencing techniques as a rapid means of surveying the diversity of HFL communities in the southern Beaufort Sea (Canada), targeting the surface, the SCM and just below the SCM. In addition to identifying major clades and their distribution, we explored the micro-diversity within the globally significant but uncultivated clade of marine stramenopiles (MAST-1) to examine the possibility of niche differentiation within the stratified water column. Our results strongly implied that HFL community composition was determined by water mass rather than geographical location across the Beaufort Sea. Future work should focus on the biogeochemical and ecological repercussions of different HFL communities in the face of climate driven changes to the physical structure of the Arctic Ocean
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.