Purpose: The present study was conducted to re-evaluate the effect of low-level 1800 MHz RF signals (up to public exposure level for local exposure) on RAS/MAPK activation in live cells. Material and methods: Using molecular probes based on the Bioluminescence Resonance Energy Transfer technique (BRET), we assessed the effect of Continuous wave (CW) and Global System for Mobile (GSM)-modulated 1800 MHz signals (up to 2 W/kg) on ERK and RAS kinases' activity in live HuH7 cells. Results: We found that radiofrequency field (RF) exposure for 24h altered neither basal level of RAS and ERK activation nor the potency of phorbol-12-myristate-13-acetate (PMA) to activate RAS and ERK kinases, whatever the Specific Absorption Rate (SAR) or signal used. However, we found that exposure to GSM-modulated 1800 MHz signals at 2 W/kg decreased the PMA maximal efficacy to activate both RAS and ERK kinases' activity. Exposure with CW 1800 MHz signal at 2 W/kg only decreased maximal efficacy of PMA to activate ERK but not RAS. No effects of RF exposure at 0.5 W/kg was observed on maximal efficacy of PMA to activate either RAS or ERK whatever the signal used. Conclusion:Our results indicate that RF exposure decreases the efficiency of the cascade of events, which, from the binding of PMA to its receptor(s), leads to the activation of RAS and ERK kinases. This effect of RF exposure is reminiscent of RF-induced adaptive response.
As of today, only acute effects of RF fields have been confirmed to represent a potential health hazard and they are attributed to non-specific heating (≥1 °C) under high-level exposure. Yet, the possibility that environmental RF impact living matter in the absence of temperature elevation needs further investigation. Since HSF1 is both a thermosensor and the master regulator of heat-shock stressresponse in eukaryotes, it remains to assess HSF1 activation in live cells under exposure to low-level RF signals. We thus measured basal, temperature-induced, and chemically-induced HSF1 trimerization, a mandatory step on the cascade of HSF1 activation, under RF exposure to Continuous Wave (CW), Global System for Mobile (GSM), and Wi-Fi modulated 1800 MHz signals, using a Bioluminescence Resonance Energy Transfer technique (BRET) probe. Our results show that, as expected, HSF1 is heat-activated by acute exposure of transiently-transfected HEK293T cells to a CW RF field at a Specific Absorption Rate of 24 W/kg for 30 min. However, we found no evidence of HSF1 activation under the same RF exposure condition when the cell culture medium temperature was fixed. We also found no experimental evidence that, at a fixed temperature, chronic RF exposure for 24 h at a SAR of 1.5 and 6 W/kg altered the potency or the maximal capability of the proteasome inhibitor MG132 to activate HSF1, whatever signal used. We only found that RF exposure to CW signals (1.5 and 6 W/kg) and GSM signals (1.5 W/kg) for 24 h marginally decreased basal HSF1 activity.
The existence of effects of radiofrequency field exposure at environmental levels on living tissues and organisms remains controversial, in particular regarding potential "nonthermal" effects produced in the absence of temperature elevation. Therefore, we investigated whether TRPV1, one of the most studied thermosensitive channels, can be activated by the heat produced by radiofrequency fields and by some specific nonthermal interaction with the fields. We have recently shown that TRPV1 activation can be assessed in real-time on live cells using the bioluminescence resonance energy transfer technique. Taking advantage of this innovative assay, we monitored TRPV1 thermal and chemical modes of activation under radiofrequency exposure at 1800 MHz using different signals (CW, GSM, UMTS, LTE, Wi-Fi and WiMAX) at specific absorption rates between 8 and 32 W/kg. We showed that, as expected, TRPV1 channels were activated by the heat produced by radiofrequency field exposure of transiently-transfected HEK293T cells, but found no evidence of TRPV1 activation in the absence of temperature elevation under radiofrequency field exposure. There was no evidence either that, at fixed temperature, radiofrequency exposure altered the maximal efficacy of the agonist Capsaicin to activate TRPV1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.