During the last years, big data has become the new emerging trend that increasingly attracting the attention of the R&D community in several fields (e.g., image processing, database engineering, data mining, artificial intelligence). Marine data is part of these fields which accommodates this growth, hence the appearance of marine big data paradigm that monitoring advocates the assessment of human impact on marine data. Nonetheless, supporting acoustic sounds classification is missing in such environment, with taking into account the diversity of such data (i.e., sounds of living undersea species, sounds of human activities, and sounds of environmental effects). To overcome this issue, we propose in this paper an approach that efficiently allowing acoustic diversity classification using machine learning techniques. The aim is to reach an automated support of marine big data analysis. We have conducted a set of experiments, using a real marine dataset, in order to validate our approach and show its effectiveness and efficiency. To do so, three machine learning techniques are employed: (i) classic machine learning models (i.e., k-nearest neighbor and support vector machine), (ii) deep learning based on convolutional neural networks, and (iii) transfer learning based on the reuse of pretrained models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.