Rising sea levels, extreme weather events, and unsustainable coastal zone development pose serious threats to growing coastal communities. Human actions, such as shoreline development and hardening in at-risk areas, can damage nearshore ecosystems and exacerbate existing risks to coastal populations. A comprehensive understanding of shoreline changes in response to development, storm events, and sea-level rise is needed to effectively mitigate coastal hazards and promote adaptive and resilient coastlines. To determine whether human modification of shorelines can be accurately quantified and assessed over time, we evaluated past and present shoreline mapping and classification efforts in the United States. We coupled a review of available US shoreline data with a survey of coastal planners and managers involved with US state shoreline mapping programs. Using these data, we estimated the current extent of shoreline modification along the Atlantic, Pacific, and Gulf US coasts. However, we found that quantifying shoreline modifications over time nationally—or even within a single state—is currently infeasible due to changes in shoreline resolution associated with advances in shoreline mapping methodologies and a lack of regularly updated shoreline maps. State-level analysis from surveys revealed that 20 US coastal states have undertaken shoreline mapping projects, with sixteen tracking shoreline type and/or condition. However, of the 36 shoreline maps and databases identified, only half (18) were updated regularly or had planned updates. Lacking shoreline change data, coastal communities risk accepting increasingly degraded coastal zones and making poor management decisions based on shifted baselines. Thus, we recommend increasing the scale and funding for several ongoing innovative shoreline mapping efforts. These efforts are particularly focused on improving and standardizing shoreline mapping techniques, as well as establishing accurate baselines for shoreline conditions in the United States. Without accurate baselines and regular, consistent updates to shoreline data, managers cannot manage shorelines in a way that effectively mitigates coastal hazards while also promoting socio-ecological resilience in a changing climate.
The detrimental ecological impacts of engineered shoreline protection methods (e.g., seawalls) and the need to protect the coastal zone have prompted calls for greater use of natural and nature‐based infrastructure (NNBI). To balance competing needs of structural stability and ecological functioning, managers require assessments of NNBI designs and materials for differing environmental settings (e.g., among wave‐energy regimes). To examine the effects of setting and oyster‐based NNBI design on the provision of shoreline protection, we constructed reefs from two substrates: a novel, biodegradable material (Oyster Catcher, OC) and traditional oyster shell bags (SB) on low‐ and high‐energy eroding salt marsh shorelines, designated based on fetch and boat wake exposure. Both reef types buffered marsh elevation change on the high‐energy shoreline relative to unaltered controls, but only SB reefs were able to do so on the low‐energy shoreline. Additionally, both shorelines experienced high ambient rates of retreat and declines in marsh vegetation shoot density. Although constructed reefs did not mitigate marsh retreat on the low‐energy shoreline, novel OC reefs significantly reduced retreat relative to SB reefs and control sites (no reefs) on the high‐energy shoreline. Those SB reefs were severely damaged by storm events, increasing their areal footprints at the expense of vertical relief. Conversely, OC reefs on both shorelines exhibited steady oyster recruitment and growth and hosted higher densities of larger oysters. To successfully provide shoreline stabilization benefits, oyster‐based NNBI must be structurally stable and able to promote sustained oyster recruitment and growth. Our results indicate that deliberate decisions regarding NNBI substrate, siting, and configuration can produce resilient reefs, which reduce rates of erosion and, in some cases, enhance vertical accretion along salt marsh edges. The growth trajectory, structural stability, and co‐benefit provisioning of OC reefs demonstrate the potential of alternative restoration substrates to provide valuable oyster habitat along threatened marsh shorelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.