In this paper, a novel robust PID controller design technique is proposed for the parametric uncertain systems via the dominant pole assignment approach. In the closed‐loop, it is aimed that two poles are placed in the desired (dominant) region, and it is guaranteed that the remaining (unassigned) poles are located far away from the dominant pole region under all possible perturbations. The robust PID controller design technique is firstly given for the interval type characteristic polynomials with the help of vertex results. After that, the proposed method is generalized to cover the affine‐linear type characteristic polynomials. The method is based on the well‐known robust stability theorems and the generalized Nyquist theorem. The success of the proposed design technique is demonstrated on the control systems through simulation studies for both the interval and affine‐linear cases and compared with the other robust PID controllers from the literature. It is shown that the proposed robust PID controllers guarantee the desired pole configuration in the closed‐loop, and the closed‐loop performance specifications are satisfied even in the worst case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.