In this study, bismuth oxybromide/reduced graphene oxide (BiOBr/RGO), i.e. BiOBr-G nanocomposites, were synthesized using a one-step microwave-assisted method. The structure of the synthesized nanocomposites was characterized using Raman spectroscopy, X-ray diffractometry (XRD), photoluminescence (PL) emission spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and ultraviolet-visible diffuse reflection spectroscopy (DRS). In addition, the ability of the nanocomposite to degrade methylene blue (MB) under visible light irradiation was investigated. The synthesized nanocomposite achieved an MB degradation rate of above 96% within 75 min of continuous visible light irradiation. In addition, the synthesized BiOBr-G nanocomposite exhibited significantly enhanced photocatalytic activity for the degradation of MB. Furthermore, the results revealed that the separation of the photogenerated electron–hole pairs in the BiOBr-G nanocomposite enhanced the ability of the nanocomposite to absorb visible light, thus improving the photocatalytic properties of the nanocomposites. Lastly, the MB photo-degradation mechanism of BiOBr-G was investigated, and the results revealed that the BiOBr-G nanocomposites exhibited good photocatalytic activity.
The industry development in the last 200 years has led to to environmental pollution. Dyes emitted by pharmaceutical and other industries are major organic pollutants. Organic dyes are a pollutant that must be removed from the environment. In this work, we adopt a facile microwave hydrothermal method to synthesize ZnFe2O4/rGO (ZFG) adsorbents and investigate the effect of synthesis temperature. The crystal structure, morphology, chemical state, and magnetic property of the nanocomposite are investigated by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and a vibrating sample magnetometer. Furthermore, the synthesized ZFGs are used to remove methylene blue (MB) dye, and the adsorption kinetics, isotherm, mechanism, and reusability of this nanomaterial are studied. The optimal ZFG nanocomposite had a dye removal percentage of almost 100%. The fitting model of adsorption kinetics followed the pseudo-second-order model. The isotherm model followed the Langmuir isotherm and the theoretical maximum adsorption capacity of optimal ZFG calculated by this model was 212.77 mg/g. The π–π stacking and electrostatic interaction resulted in a high adsorption efficiency of ZFG for MB adsorption. In addition, this nanocomposite could be separated by a magnet and maintain its dye removal percentage at almost 100% removal after eight cycles, which indicates its high suitability for utilization in water treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.