In the majority of gene expression investigations, selecting relevant genes for sample classification is considered a frequent challenge, with researchers attempting to discover the minimum feasible number of genes while yet achieving excellent predictive performance. Various gene selection methods employ univariate (gene-by-gene) gene relevance rankings as well as arbitrary thresholds for selecting the number of genes, are only applicable to 2-class problems and use gene selection ranking criteria unrelated to the algorithm of classification. A modified random forest (MRF) algorithm depending on the meerkat clan algorithm (MCA) is provided in this work. It is one of the swarm intelligence algorithms and one of the most significant machine learning approaches in the decision tree. MCA is used to choose characteristics for the RF algorithm. In information systems, databases, and other applications, feature selection imputation is critical. The proposed algorithm was applied to three different databases, where the experimental results for accuracy and time proved the superiority of the proposed algorithm over the original algorithm.
Now mammography can be defined as the most reliable method for early breast cancer detection. The main goal of this study is to design a classifier model to help radiologists to provide a second view to diagnose mammograms. In the proposed system medium filter and binary image with a global threshold have been applied for removing the noise and small artifacts in the pre-processing stage. Secondly, in the segmentation phase, a Hybrid Bounding Box and Region Growing (HBBRG) algorithm are utilizing to remove pectoral muscles, and then a geometric method has been applied to cut the largest possible square that can be obtained from a mammogram which represents the ROI. In the features extraction phase three method was used to prepare texture features to be a suitable introduction to the classification process are first Order (statistical features), Local Binary Patterns (LBP), and Gray-Level Co-Occurrence Matrix (GLCM), Finally, SVM has been applied in two-level to classify mammogram images in the first level to normal or abnormal, and then the classification of abnormal once in the second level to the benign or malignant image. The system was tested on the MAIS the Mammogram image analysis Society (MIAS) database, in addition to the image from the Teaching Oncology Hospital, Medical City in Baghdad, where the results showed achieving an accuracy of 95.454% for the first level and 97.260% for the second level, also, the results of applying the proposed system to the MIAS database alone were achieving an accuracy of 93.105% for the first level and 94.59 for the second level.
Solving optimization problems is an ever-growing subject with an enormous number of algorithms. Examples of such algorithms are Scatter Search (SS) and genetic algorithms. Modifying and improving of algorithms can be done by adding diversity and guidance to them. Chaotic maps are quite sensitive to the initial point, which means even a very slight change in the value of the initial point would result in a dramatic change of the sequence produced by the chaotic map Arnold's Cat Map. Arnold's Cat Map is a chaotic map technique that provides long non-repetitive random-like sequences. Chaotic maps play an important role in improving evolutionary optimization algorithms and meta-heuristics by avoiding local optima and speeding up the convergence. This paper proposes an implementation of the scatter search algorithm with travelling salesman as a case study, then implements and compares the developed hyper Scatter Arnold's Cat Map Search (SACMS) method against the traditional Scatter Search Algorithm. SACMS is a hyper Scatter Search Algorithm with Arnold's Cat Map Chaotic Algorithm. Scatter Arnold's Cat Map Search shows promising results by decreasing the number of iterations required by the Scatter Search Algorithm to get an optimal solution(s). Travelling Salesman Problem, which is a popular and well-known optimization example, is implemented in this paper to demonstrate the results of the modified algorithm Scatter Arnold's Cat Map Search (SACMS). Implementation of both algorithms is done with the same parameters: population size, number of cities, maximum number of iterations, reference set size, etc. The results show improvement by the modified algorithm in terms of the number of iterations required by SS with an iteration reduction of 10–46 % and improvements in time to obtain solutions with 65 % time reduction
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.