In the majority of gene expression investigations, selecting relevant genes for sample classification is considered a frequent challenge, with researchers attempting to discover the minimum feasible number of genes while yet achieving excellent predictive performance. Various gene selection methods employ univariate (gene-by-gene) gene relevance rankings as well as arbitrary thresholds for selecting the number of genes, are only applicable to 2-class problems and use gene selection ranking criteria unrelated to the algorithm of classification. A modified random forest (MRF) algorithm depending on the meerkat clan algorithm (MCA) is provided in this work. It is one of the swarm intelligence algorithms and one of the most significant machine learning approaches in the decision tree. MCA is used to choose characteristics for the RF algorithm. In information systems, databases, and other applications, feature selection imputation is critical. The proposed algorithm was applied to three different databases, where the experimental results for accuracy and time proved the superiority of the proposed algorithm over the original algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.