Abstrak-Anak-anak pada usia 2 bulan sampai 5 tahun (Balita) lebih rentan terkena penyakit. Lingkungan sangat mempengaruhi kesehatan Balita. Penelitian ini bertujuan untuk membuat sebuah aplikasi sistem pakar diagnosa penyakit pada Balita berbasis mobile. Penelitian ini terdiri dari tiga tahap. Tahap pertama adalah pengumpulan data dan informasi dari Manajemen Terpadu Balita Sakit (MTBS) dan wawancara dengan Bidan. Dari pengumpulan data dan informasi tersebut ditemukan fakta penyakit, keluhan, gejala dan saran penanganan. Tahap kedua adalah pembuatan rule dengan 18 penyakit. Tahap ketiga adalah implementasi aplikasi sistem pakar berbasis mobile dengan fitur diagnosa penyakit, riwayat diagnosa dan kumpulan penyakit. Aplikasi sistem pakar yang dibuat dapat mendiagnosa penyakit dan memberikan saran penanganan. Hasil evaluasi dari 50 data uji coba menghasilkan tingkat akurasi sebesar 82%, dimana 41 hasil diagnosa yang benar dan 9 diagnosa yang salah.Kata Kunci-Sistem Pakar, Forward Chaining, Diagnosa Penyakit, Manajemen Terpadu Balita Sakit, Knowladge Base Abstract-Children at the age of 2 months to 5 years (toddlers) are more susceptible to disease contagious. Environmental condition significantly influences the children health. This research aimed to create a mobilebased expert system application to diagnose disease in toddlers. This research consist of three stages. The first stage were data and information collection from Manajemen Terpadu Balita Sakit (MTBS) and interview with medical staffs. From the first stage, we can discover the disease facts, signs, symptoms and treatment advices. The second stage was the construction of rules for 18 diseases. The third stage was the implementation of mobile-based expert system application with features of disease diagnosis, diagnosis history and collection of disease diagnosis. Expert system application made able to diagnose the disease and provide treatment advice. The results of evaluation using 50 testing data provides the level of accuracy of 82%, where 41 diagnosis result were true and 9 diagnosis were false.
Tumbuhan merupakan salah satu komponen yang dibutuhkan oleh manusia. Ilmu yang mempelajari mengenai tumbuhan juga sudah mengalami kemajuan pesat, begitupun sistem pengenalan dan identifikasi tanaman yang berguna dalam memberi berbagai informasi. Proses pengenalan dapat diterapkan dalam berbagai bagian dari tanaman, salah satunya adalah pengenalan pada citra daun. Proses pengenalan citra daun harus melalui proses pembelajaran yang panjang, maka digunakan teknik pengolahan citra yaitu Jaringan Saraf Tiruan (JST). Identifikasi jenis daun menggunakan JST pada percobaan kali ini menggunakan 4 jenis nama daun seperti daun bougenvillea, daun Geranium, daun Magnolia Soulangeana, daun pinus, dengan 16 sampel citra daun dengan bentuk daun yang berbeda-beda untuk setiap jenisnya. Epoch dalam Jaringan Saraf Tiruan ini mencapai nilai maksimal 1000 iterasi. Sebelum melakukan pengujian citra, terlebih dahulu dilakukan proses pelatihan citra. Setelah melakukan pengujian pada 16 sampel citra daun, diperoleh 15 sampel citra daun memiliki hasil benar terdeteksi dan 1 sampel citra daun memiliki hasil tidak terdeteksi. Dari hasil penelitian ini memiliki persentasi keberhasilan sebesar 93,6% berhasil terdeteksi dan 6,4% tidak berhasil terdeteksi. Kata kunci: Pengolahan citra, Jaringan Saraf Tiruan, citra daun
Hoax news in Indonesia spread at an alarming rate. To reduce this, hoax news detection system needs to be created and put into practice. Such a system may use readers’ feedback and Naïve Bayes algorithm, which is used to verify news. Overtime, by using readers’ feedback, database corpus will continue to grow and could improve system performance. The current research aims to reach this. System performance evaluation is carried out under two conditions ‒ with and without sources (URL). The system is able to detect hoax news very well under both conditions. The highest precision, recall and f-measure values when including URL are 0.91, 1, and 0.95 respectively. Meanwhile, the highest value of precision, recall and f-measure without URL are 0.88, 1 and 0.94, respectively.
Abstract. Leukemia is a type of cancer which is caused by malignant neoplasms in leukocyte cells. Leukemia disease which can cause death quickly enough for the sufferer is a type of acute lymphocyte leukemia (ALL). In this study, we propose automatic detection of lymphocyte leukemia through classification of lymphocyte cell images obtained from peripheral blood smear single cell. There are two main objectives in this study. The first is to extract featuring cells. The second objective is to classify the lymphocyte cells into two classes, namely normal and abnormal lymphocytes. In conducting this study, we use combination of shape feature and histogram feature, and the classification algorithm is knearest Neighbour with k variation is 1, 3, 5, 7, 9, 11, 13, and 15. The best level of accuracy, sensitivity, and specificity in this study are 90%, 90%, and 90%, and they were obtained from combined features of area-perimeter-mean-standard deviation with k=7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.