In this paper, we present the characteristics and performance of polymer electrolyte membranes (PEMs) based on poly(vinylidene fluoride) (PVDF). The membranes were prepared via a phase-inversion method (non-solvent-induced phase separation (NIPS)). As separators for lithium battery systems, additive modified montmorillonite (MMT) nano-clay served as a filler and poly(vinylpyrrolidone) (PVP) was used as a pore-forming agent. The membranes modified with an additive (8 wt % nano-clay and 7 wt % PVP) showed an increased porosity (87%) and an uptake of a large amount of electrolyte (801.69%), which generated a high level of ionic conductivity (5.61 mS cm−1) at room temperature. A graphite/PEMs/LiFePO4 coin cell CR2032 showed excellent stability in cycling performance (average discharge capacity 127 mA h g−1). Based on these results, PEMs are promising materials to be used in Polymer Electrolyte Membranes in lithium-ion batteries.
Polyvinylidene Fluoride/Zinc Oxide (PVDF/ZnO) nanocomposite membranes electrolytes were prepared via non-solvent induced phase separation (NIPS) method. used N,N-dimethyl acetamide (DMAc) as a solvent to dissolve the polymer (PVDF) so that different concentrations (-0, 4,5,6, 7and 8 wt. %) of polyvinylpyrrolidone (PVP) as pore-forming agents. and zinc oxide (ZnO) as filler. The as-prepared membranes were immersed in a coagulating bath containing a non-solvent (water) to complete the membrane pore structure. Scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the structure and morphology of the membranes. Both the uptake of electrolyte and ionic conductivity of the membranes gel polymer electrolytes (GPEs) were increased with increases in the PVP content. The highest conductivity at room temperature for GPEs is found to be 5.64 mS cm-1. Additionally, the membrane's crystallinity (11.9 %) proved to be less than pure PVDF (37.26%), and a decrease in the crystallinity was detected with increases in the addition of PVP. A LiFePO4 cathode was used to examine the performance of the GPEs in battery lithium-ion, and this discharge capacity of the gel-type composite membrane could be enhanced from 96.99 (PVDF) to 125.845 mA H g-1 (modified PVDF with ZnO and PVP) . The results suggest that this membranes gel electrolytes exhibited good feasibility to be used in large-capacity lithium-ion batteries that require high safety.
The development of bioethanol production is being widely discussed both the development of methods and materials used. One of potential raw material for bioethanol production is white sorghum (Sorghum bicolor). It thrives in tropical countries and has fairly high starch content about 65% -71% typically. Thus, it can be used as raw material of bioethanol production. During this process, a simultaneous saccharification and fermentation reaction (SSF) produces more ethanol than conventional processes. The purpose of this study is to determine proper method for producing bioethanol from this raw material by comparing SSF reaction of NaOH-treated white sorghum seeds to untreated sorghum seeds. Beads biocatalyst was prepared by coimmobilization method of glucoamylase by the yeast (Saccharomyces cereviceae) in Na-Alginate 6%. They were varied with variable concentrations of yeast 5%, 7%, 9% and 25%, 35% of glucoamylase enzyme. The biocatalyst is more stable, producing more bioethanol and reducing contamination. The results indicated that white sorghum seeds with 0.1 M NaOH treatment produced more bioethanol than untreated sorghum seeds using beads biocatalyst with concentration of yeast 9% and 35% of enzyme. Maximum production of ethanol was 11.48% with the value of K m and V m are -0.0014 g/mL and 0.00245 g/mL.hour respectively. By overnight soaking in 0.1 M NaOH solution, the purity of the starch in the white sorghum seeds increased.
Highly crystalline “zero-strain” Li4Ti5O12 (LTO) has great potential as an alternative material for the anodes in a lithium ion battery. In this research, highly crystalline LTO with impressive electrochemical characteristics was synthesized via a salt-assisted solid-state reaction using TiO2, LiOH, and various amounts of NaCl as a salt additive. The LTO particles exhibited a cubic spinel structure with homogenous micron-sized particles. The highest initial specific discharge capacity of LTO was 141.04 mAh/g with 4 wt % NaCl addition, which was tested in a full-cell (LTO/LiFePO4) battery. The battery cell showed self-recovery ability during the cycling test at 10 C-rate, which can extend the cycle life of the cell. The salt-assisted process affected the crystallinity of the LTO particles, which has a favorable effect on its electrochemical performance as anodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.