Interleukin (IL)-2 is a pleiotropic cytokine that is necessary to prevent chronic inflammation in the gastrointestinal tract 1 – 4 . The protective effects of IL-2 involve the generation, maintenance and function of regulatory T cells (Tregs) 4 – 8 , and low-dose IL-2 has emerged as a potential therapeutic strategy in inflammatory bowel disease (IBD) patients 9 . However, the cellular and molecular pathways that control the production of IL-2 in the context of intestinal health are undefined. Here we identify that IL-2 is acutely required to maintain Tregs and immunologic homeostasis throughout the gastrointestinal tract. Strikingly, lineage-specific deletion of IL-2 in T cells did not recapitulate these phenotypes in the small intestine. Unbiased analyses revealed that group 3 innate lymphoid cells (ILC3) are the dominant cellular source of IL-2 in the small intestine, which is selectively induced by IL-1β. Macrophages produce IL-1β in the small intestine and activation of this pathway involves MyD88- and Nod2-dependent sensing of the microbiota. Loss-of-function studies defined that ILC3-derived IL-2 is essential to maintain Tregs, immunologic homeostasis and oral tolerance to dietary antigens uniquely in the small intestine. Furthermore, ILC3 production of IL-2 was significantly reduced in the small intestine of Crohn’s disease patients, and this correlated with diminished Tregs. Collectively, these results reveal a previously unappreciated pathway whereby a microbiota- and IL-1β-dependent axis promotes ILC3 production of IL-2 to orchestrate immune regulation in the intestine.
SUMMARY Cells undergoing xenobiotic or oxidative stress activate the transcription factor Nrf2, which initiates an intrinsic “stress surveillance” pathway. We recently found that the cytokine IL-17D effects a form of extrinsic stress surveillance by inducing antitumor immunity, but how IL-17D is regulated remains unknown. Here, we show that Nrf2 induced IL-17D in cancer cell lines. Moreover, both Nrf2 and IL-17D were induced in primary tumors as well as during viral infection in vivo. Expression of IL-17D in tumors and virally infected cells is essential for optimal protection of the host as il17d−/− mice experienced a higher incidence of tumors and exacerbated viral infections compared to WT animals. Moreover, activating Nrf2 to induce IL-17D in established tumors led to natural killer cell-dependent tumor regression. These data demonstrate that Nrf2 can initiate both intrinsic and extrinsic stress surveillance pathways and highlight the use of Nrf2 agonists as immune therapies for cancer and infection.
Highlights d Ly49H receptor density drives diversity in NK cell function during MCMV infection d NK cells undergo avidity selection during CMV infection d Ly49H hi NK cells possess greater potential for cytotoxic and adaptive responses d Ly49H lo NK cells possess greater potential for IFN-g production
Cytokine signaling via signal transducer and activator of transcription (STAT) proteins is crucial for optimal antiviral responses of natural killer (NK) cells. However, the pleiotropic effects of both cytokine and STAT signaling preclude the ability to precisely attribute molecular changes to specific cytokine-STAT modules. Here, we employed a multi-omics approach to deconstruct and rebuild the complex interaction of multiple cytokine signaling pathways in NK cells. Proinflammatory cytokines and homeostatic cytokines formed a cooperative axis to commonly regulate global gene expression and to further repress expression induced by type I interferon signaling. These cytokines mediated distinct modes of epigenetic regulation via STAT proteins, and collective signaling best recapitulated global antiviral responses. The most dynamically responsive genes were conserved across humans and mice, which included a cytokine-STAT Reprints and permissions information is available at www.nature.com/reprints.
Cell-cell fusion describes the process by which two cells combine their plasma membranes and become a single cell, possessing and retaining certain genetic information from each parent cell. Here, using a Cre-loxP-based method initially developed to investigate extracellular vesicle targeting, we found that cancer cells spontaneously and rapidly deliver DNA to non-cancer cells in vitro via a cell-cell fusion event. The resulting hybrid cells were aneuploid and possessed enhanced clonal diversity and chemoresistance compared to non-hybrid cancer cells. We also observed cell-cell fusion to occur in vivo between melanoma cells and non-cancer cells of both hematopoietic and non-hematopoietic lineages. These findings suggest that cell-cell fusion occurs during the natural progression of cancer and show that this mechanism has the potential to cause massive genomic alterations that are observed in cancer. Furthermore, these findings somewhat contradict recent publications suggesting that the Cre-loxP method measures only extracellular vesicle-mediated intercellular communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.