We present a study that uses a laser trapping technique for measurement of radiation sensitivity of untreated and chemo-treated cancer cells. We used a human mammary tumor cell line (4T1) treated by an antitumor compound, 2-Dodecyl-6-methoxycyclohexa-2, 5-diene-1,4-dione (DMDD), which was extracted from the root of Averrhoa carambola L. The untreated control group, and both 2-hour and 24-hour treated groups of 4T1 cells were used in this study. The absorbed threshold ionization energy (TIE) and the threshold radiation dose (TRD) were determined using a high-power infrared laser (at 1064 nm) trap by single and multiple cells trapping and ionization. The results were analyzed using descriptive and t-statistics. The relation of the TIE and TRD to the mass of the individual cells were also analyzed for different hours of treatment in comparison with the control group. Both TIE and TRD decrease with increasing treatment periods. However, the TRD decreases with mass regardless of the treatment. Analyses of the TRD for single vs multiple cells ionizations within each group have also consistently showed this same behavior regardless of the treatment. The underlying factors for these observed relations are explained in terms of radiation, hyperthermia, and chemo effects.
The post-ionization dynamics of chemo-treated and untreated 4T1 breast cancer cells ionized by laser trapping techniques are studied. We have determined each cell’s charge and refractive index by developing a theoretical model for the forces determining the post-ionization dynamics. The shift in a cell’s refractive index due to an intense oscillating electric field was studied, and the results are reported here. We observed that a trapped cell, as it becomes charged, will eventually exit the trap perpendicular to the beam’s direction; this means that the electric force of the cell overcomes the trapping force. As a result, the cell’s conductivity changes due to the oscillating field, causing a decrease in the cell’s refractive index.
. Significance: We introduce a model for better calibration of the trapping force using an equal but oppositely directed drag force acting on a trapped red blood cell (RBC). We demonstrate this approach by studying RBCs’ elastic properties from deidentified sickle cell anemia (SCA) and sickle cell trait (SCT) blood samples. Aim: A laser trapping (LT) force was formulated and analytically calculated in a cylindrical model. Using this trapping force relative percent difference, the maximum (longitudinal) and minimum (transverse) radius rate and stiffness were used to study the elasticity. Approach: The elastic property of SCA and SCT RBCs was analyzed using LT technique with computer controlled piezo-driven stage, in order to trap and stretch the RBCs. Results: For all parameters, the results show that the SCT RBC samples have higher elastic property than the SCA RBCs. The higher rigidity in the SCA cell may be due to the lipid composition of the membrane, which was affected by the cholesterol concentration. Conclusions: By developing a theoretical model for different trapping forces, we have also studied the elasticity of RBCs in SCT (with hemoglobin type HbAS) and in SCA (with hemoglobin type HbSS). The results for the quantities describing the elasticity of the cells consistently showed that the RBCs in the SCT display lower rigidity and higher deformability than the RBCs with SCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.